

Journal of Organometallic Chemistry 542 (1997) 1-18

Donorfreie und donorhaltige Supersilylalkalimetalle 'Bu₃SiM⁻¹: Synthesen, Charakterisierung, Strukturen⁻²

N. Wiberg^{*}, K. Amelunxen, H.-W. Lerner, H. Schuster, H. Nöth³, I. Krossing⁴, M. Schmidt-Amelunxen⁵, T. Seifert⁶

Institut für Anorganische Chemie der Universität München, Meiserstraße 1, D-80333 München, Germany

Eingegangen 27 Februar 1997

Abstract

Supersilyl alkaline metals (alkali supersilanides) 'Bu SiM without or with donors Do like ethers, amines, aromatic hydrocarbons are easily obtained by the action of alkaline metals M on supersilyl halides 'Bu 3SiX above room temperature in alkanes or donorsolvents like tetrahydrofuran, benzene: $Bu_3SiX + 2M \rightarrow Bu_3SiM + MX$; $Bu_3SiM + nDo \rightarrow Bu_3SiM(Do)$. Ethers as donors can be exchanged by stronger donors like PMDTA, 18-crown-6, cryptand-222. In particular the following extremely water and air sensitive compounds are prepared: yellow 'Bu₃SiLi (as to X-ray structure analysis dimeric with Si · · · Li · · · Si contacts; cf. Abb. 1), orange yellow 'Bu₃SiNa (as to X-ray structure analysis dimeric with Si · · · Na · · · Si contacts; cf. Abb. 2), light-yellow 'Bu₃SiK (as to its insolubility in alkanes polymeric), 'Bu₃SiM (M = Rb, Cs; insoluble in alkanes) light-yellow to colorless 'Bu₃SiLi(THF)₂ (probably monomeric), light-yellow 'Bu₃SiNa(THF)₂ (as to X-ray structure analysis dimeric with CH₃ · · · Na contacts; cf. Abb. 3), light-yellow 'Bu₃SiNa(OBu₂)₂ (probably analogously structured as the THF adduct), yellow 'Bu₃SiK(THF), (loses THF; stable only in THF), light-yellow 'Bu₃SiNa(PMDTA) (as to X-ray structure analysis monomeric; cf. Abb. 4), orange-red 'Bu₃SiK(Benzene)₃ (as to X-ray structure analysis monomeric, cf. Abb. 5), orange-yellow 'Bu₃SiNa(18-C-6) (unstable as to its tendency to deprotonate 18-crown-6), 'Bu₃SiM(C222) (M = Na, K; not isolable as to its tendency to deprotonate cryptand-222). Because of the high tendency of the anionic part 'Bu₃Si⁺ of the compounds mentioned for delivering electrons, the supersilyl alkaline metals act as strong bases which deprotonate even weak bases such as tetrahydrofuran or benzeue under formation of supersilane 'Bu₃SiH. Over and above that, they work as good nucleophiles and reducing agents which for example react with Me₃SiX under formation of trimethylsilylsupersilane Me₃Si=Si'Bu₃ and with Ag*NO₃⁺ under formation of superdisilane 'Bu₃Si-Si'Bu₃. As the supersilyl alkaline metals may even be oxidized by supersilyl halides in alkanes at 100°C by way of 'Bu₃SIM + 'Bu₃SIX → 'Bu₃Si' + MX + 'Bu₃Si', and 'Bu₃Si' + RH → 'Bu₃SiH + R', and 2'Bu₃Si' \rightleftharpoons ('Bu₃Si)₂ the formation of 'Bu, SiM from 'Bu, SiI and K, Rb, Cs at elevated temperatures in saturated hydrocarbons is accompanied by the formation of supersilane, superdisilane and secondary products of R⁺. © 1997 Elsevier Science S.A.

Keywords: Supersilyl anion 'Bu₃Si⁻; Alkaline Metals; Donors; Acid-base reaction; Nucleophilic substitution; Redox reaction; X-ray structure analyses

1. Einleitung

- ⁴ X-ray structure analyses.
- ⁵ X-ray structure analyses.

Sterisch überladene Substituenten R^{*} erlangen in der Chemie zusehends an Bedeutung als Hilfsmittel zur Präparation von Verbindungen $R_n E_m$, in welchen isolierte Elemente E (m = 1) ungewöhnliche Geometrie (z.B. digonalen statt gewinkelten Bau im Falle von Sauerstoff: -O- [2]) sowie kleine Koordinationszahl (z.B. drei statt vier im Falle von Silicium: >Si = [3]) aufweisen oder in welchen-normalerweise labile-Cluster aus Elementen (m > 1) vorliegen (z.B. Al₄-Tetraeder [4,5]). Einige Beispiele für R^{*} stellen Phenylgrup-

Corresponding author. Fax: +49-89-5902578.

¹ Dedicated to Professor Wolfgang Beck on the occasion of his 65. birthday.

² See Ref. [1].

³ X-ray structure analyses.

⁶ X-ray structure analyses.

pen dar, welche wie Supermesityl sperrige Reste in 2-, 4- und 6-Position tragen, aber auch Trisyl, Hypersilyl und Supersilyl [6-13] (bezüglich der Namen der Substituenten vgl. [14-16]).

Tatsächlich kommen der Gruppe Supersilyl als sterisch überladenem Rest einige Vorteile zu: Die Gruppe verhält sich in Verbindungen chemisch vergleichsweise inert, da sie nur gesättigte Organylsubstituenten enthält, wogegen die anderen aufgeführten sperrigen Gruppen entweder wegen ihres ungesättigten Charakters (Aryl) oder wegen der-zu intramolekularen Wanderungen neigenden-Silylsubstituenten (Trisyl, Hypersilyl) reaktiver sind. Darüber hinaus stabilisiert Supersilyl als starker Elektronendonator ähnlich wie andere elektronenschiebende Reste Bindungen zwischen elektropositiven Elementen, was im Hinblick auf die Synthese von supersilylierten Metallclustern von Bedeutung sein kann.

Schließlich läßt sich Supersilyl nach unseren Erfahrungen vergleichsweise leicht präparieren (bezüglich der ersten Synthese von Supersilylverbindungen vgl. [17-20]): Man setzt im Sinne von Gleichg. (1) zunächst Trichlorsilan SiHCl₃ mit 'BuLi in siedendem Pentan zum Chlorsilan 'Bu₂SiHCl um (ca. 85%ige Ausbeute), das dann mit KHF₂/KF ohne Lösungsmittel bei 70°C in das Fluorsilan 'Bu₂SiHF verwandelt wird (ca. 90%ige Ausbeute). Letztere Verbindung reagiert mit 'BuLi in siedendem Heptan zum Supersilan 'Bu₃SiH (ca. 85%ige Ausbeute), welches durch Halogenierung mit 'X₂' (Einwirkung von PF₅, Cl₂/Pentan, Br₂/Pentan oder I₂/CHCl₃) quantitativ in Supersilylhalogenide über führbar ist [21,22].

SiHCl₃
$$\frac{+2}{-2} \frac{^{1}\text{BuL}i}{\text{LiCl}}$$
 ¹Bu₂SiHCl $\frac{+F^{*}}{-Cl^{*}}$ ¹Bu₂SiHF
 $\frac{+^{1}\text{BuL}i, -LiF}{^{1}\text{Bu}_{3}\text{SiH}}$ (1)
¹Bu₃SiH $\frac{+^{*}X_{3}^{*}}{-HX}$ ¹Bu₃SiX
Supersilan Supersilylhalogenide

Die Umwandlung der auf diese Weise zugänglichen

[21,22], bereits länger — neben wenigen anderen 'Bu₃Si-haltigen Substanzen [23–27] — bekannten Halogenide 'Bu₃SiX (X = F, Cl, Br, I) in andere Supersilylverbindungen 'Bu₃SiY durch nucleophile Substitution des Halogenids X⁻ gegen Y⁻ ist wegen der hohen sterischen Abschirmung des Substitutionszentrums kinetisch gehemmt. Als Nucleophile lassen sich demgemäß nur kleine Anionen wie Halogenide, Pseudohalogenide, Hydroxid, Amid nutzen [21,22]. Eine Synthese von Disupersilylverbindungen ('Bu₃Si)₂Y ist auf diesem Wege sogar unmöglich.

Ein wesentliches Tor in das Land der Supersilylverbindungen öffneten dann die Supersilylalkalimetalle (*Alkalimetallsupersilanide*) 'Bu₃SiM, für die wir vor über 10 Jahren erstmals eine Synthesemöglichkeit auffanden [28,29]. Denn letztere Substanzen lassen sich — im Gegensatz zu Supersilylhalogeniden — in der Regel leicht in andere Supersilylverbindungen umwandeln. Beispielsweise führt die Einwirkung von 'Bu₃SiM auf Elementhalogenide EX_m meist zu einem raschen Tausch von Halogenid- gegen Supersilylanionen, wobei nicht nur Monosupersilylverbindungen 'Bu₃SiEX_{m-2} sondern zudem auch Disupersilylverbindungen ('Bu₃Si)₂EX_{m-2} entstehen können (Verbindungen ('Bu₃Si)₃EX_{m-3} sind bisher unbekannt).

Inzwischen haben wir Synthesen, charakteristische Eigenschaften und Strukturen der für die 'Supersilylchemie' so wichtigen donorfreien und donorhaltigen Supersilylalkalimetalle — einer neuen Untergruppe der bereits länger bekannten und in Lit. [30] zusammenfassend erörterten Verbindungsklasse der Silylalkalimetalle R_3SiM — eingehend studiert. Einige auf dem Gebiet der Supersilylalkalimetalle erzielte Ergebnisse werden nachfolgend vorgestellt und — unter Berücksichtigung vorliegender Ergebnisse über die verwandten Hypersilylalkalimetalle (Me_3Si)_3SiM [31-33] und Trisylalkalimetalle (Me_3Si)_3CM [34] — erörtert.

2. Synthese donorfreier und donorhaltiger Supersilylalkalimetalle ¹Bu₃SiM

Supersilylalkalimetalle 'Bu₃SiM sind durch Reaktion von Supersilylhalogeniden 'Bu₃SiX mit Alkalimetallen M in gesättigten und ungesättigten Kohlenwasserstoffen wie Heptan oder Benzol und in Donorsolvenzien wie Tetrahydrofuran oder Dibutylether bei erhöhter bis normaler Temperatur gemäß Gleichg. (2) zugänglich. Es entstehen hierbei teils donorfreie, teils donorhaltige Verbindungen (s. weiter unten).

$${}^{\prime}Bu_{3}SiX + 2M \xrightarrow{(Solvens)} {}^{\prime}Bu_{3}SiM + MX \qquad (2)$$

$$Supersity lalkalimetalle (donorfrei, donorhaltig)$$

Während die Metallierungen unabhängig von den Reaktionspartnern und -medien gleichermaßen thermodynamisch begünstigt sind, bestimmen die Edukte und die Lösungsmittel die Kinetik der Reaktionsabläufe wesentlich. Und zwar erfolgen die Umsetzungen gemäß Gleichg. (2) — nach bisherigen Erkenntnissen — in den Richtungen 'Bu₃SiX = 'Bu₃SiF < 'Bu₃SiCl < 'Bu₃SiBr < 'Bu₃SiI und M = Li < Na \ll Rb < Cs sowie Solvens = Kohlenwasserstoffe < Ether leichter, d.h. in kürzerer Zeit bzw. bei niedrigerer Temperatur. Natürlich spielt zudem der Verteilungsgrad, die Oberflächenbeschaffenheit sowie der Aggregatzustand der eingesetzten Alkalimetalle eine geschwindigkeitsbestimmende Rolle.

Die den Verbindungen 'Bu₃SiM zugrundeliegenden Supersilylanionen 'Bu₃Si⁻ weisen wegen des vergleichsweise elektropositiven Charakters der zentralen Siliciumatome und dem elektronenschiebenden Effekt der drei *tert*-Butylgruppen ein hohes Bestreben zur 'Abgabe' negativer Ladung auf. Demgemäß zeigen die Supersilylalkalimetalle im Sinne der Gleichg. (3) eine hohe, mit der Polarität der SiM-Bindung zunehmende Bereitschaft zur Aufnahme von Protonen sowie von anderen Lewis-Säuren bzw. zur Abgabe von Elektronen (Wirkung als Basen, Nucleophile, Reduktionsmittel; vgl. Unterabschnitt 3.3 und Lit. [14–16]).

$$^{1}Bu_{3}SiH \stackrel{+ Proton}{(a)} \stackrel{^{1}Bu_{3}Si^{-}}{(b)} \stackrel{- Elektron}{(b)} ^{1}Bu_{3}Si^{*}$$
 (3)

Als Folge der hohen Reaktivität der Supersilylalkalimetalle kann es bereits im Zuge der Synthesen von 'Bu₃SiM zur Bildung von *Nebenprodukten* wie Supersilan 'Bu₃SiH oder Superdisilan 'Bu₃Si-Si'Bu₃ kommen. Tatslichlich enden die Umsetzungen anderer Silylhalogenide R₃SiX (R \neq 'Bu) mit Alkalimetallen M in der Regel nicht bei Silylalkalimetallen R₃SiM, sondern bei Disilanen R₃Si=SiR₃, weil die intermediär gebildeten Metallverbindungen R₃SiM rasch mit noch unverbrauchten Halogeniden gemäß R₃SiM + XSiR₃ \rightarrow R₃Si-SiR₃ + MX unter nucleophiler Substitution von X⁻ gegen R₃Si weiterreagieren [30]. Allerdings kann sich Superdisilan nach unseren bisherigen Erfahrungen aus '*sterischen*' Gründen keinesfalls auf diese Weise, sondern allenfalls auf den Wegen (4a) und (4b) bilden:

$${}^{t}Bu_{3}SiM + XSi^{t}Bu_{3} \xrightarrow{(a)} {}^{t}Bu_{3}Si^{\bullet} + MX + {}^{\bullet}Si^{t}Bu_{3}$$

$${}^{t}Bu_{3}Si^{\bullet} + {}^{\bullet}Si^{t}Bu_{3} \xrightarrow{(b)} {}^{t}Bu_{3}Si-Si^{t}Bu_{3}$$

$$\xrightarrow{(a)} {}^{t}Bu_{3}Si - Si^{t}Bu_{3} \xrightarrow{(a)} {}^{t}Si \xrightarrow{(a)} {}^{t}Si - Si^{t}Bu_{3} \xrightarrow{(a)} {}^{t}Si$$

1->

Hiernach wird zunächst ein Elektron von 'Bu₃SiM auf 'Bu₃SiX unter Spaltung der SiX- Bindung und Eliminierung von MX übertragen, dann dimerisieren sich die gebildeten Supersilylradikale. Diese '*elektronisch*' ausgelöste Superdisilanbildung gewinnt jedoch erst im Falle der stärker reduzierend wirkenden schweren Supersilylalkalimetalle 'Bu₃SiM und der leichter reduzierbaren schweren Supersilylhalogenide 'Bu₃SiX in Alkanen als Reaktionsmedien an Bedeutung (s. hierzu weiter unten und Lit. [35,36]). In diesem Zusammenhang bleibe nicht unerwähnt, daß sich ganz im Sinne der Gleichungen (4a) und (4b) aus 'Bu₃SiNa und ClAl(Si'Bu₃)₂ das Dialan ('Bu₃Si)₂Al-Al(Si'Bu₃)₂ und das Superdisilan 'Bu₃Si-Si'Bu₃ bilden (eine Vereinigung des Alanylund Silylradikals zu ('Bu₃Si)₃Al verbietet sich hier aus sterischen Gründen) [37,38].

2.1. Alkane als Solvenzien

Im Sinne des weiter oben hinsichtlich der Geschwindigkeit der Reaktion (2) Besprochenen bilden sich bei 24stündiger Umsetzung von 'Bu₃SiBr und Lithiumstaub in siedendem Heptan (ca. 100°C) bzw. bei 3stündiger Umsetzung von tBu₃SiBr und flüssigem Natrium in siedendem Heptan bzw. bei 2stündiger Umsetzung von 'Bu₃SiBr und flüssigem Kalium in auf 80°C erwärmtem Heptan praktisch nur Supersilyllithium 'Bu₃SiLi, Supersilylnatrium 'Bu₃SiNa und Supersilylkalium 'Bu₃SiK. Letztere Verbindung entsteht aus 'Bu, SiBr und K in Heptan sogar langsam bei Raumtemperatur. Analoges gilt offensichtlich für die Synthesen Supersilylrubidium 'Bu₃SiRb sowie von Supersilylcäsium 'Bu₃SiCs aus 'Bu₃SiBr und Rb sowie Cs. Die Einwirkung von Kalium und Rubidium auf 'Bu₃SiI in siedendem Heptan oder von Cäsium auf 'Bu Sil in auf 60°C erwärmtem Heptan führt dagegen außer zu Supersilylalkalimetallen 'Bu, SiM (M = K, Rb. Cs) auch zu Supersilan und Superdisilan.

Die Bildung von Superdisilan 'Bu₃Si-Si'Bu₃ und Supersilan 'Bu₃SiH verläuft wohl über Supersilylradikale 'Bu₁Si', welche im Zuge der Bildung von 'Bu₃SiM aus 'Bu₃SiX und M oder aus 'Bu₃SiM und 'Bu₃SiX nebenbei entstehen (vgl. Gleichg. (2) und (4)) und unter Dimerisierung oder Wasserstoffabstraktion weiterreagieren ('Bu₃SiH entsteht nicht durch Deprotonierung der als Solvenzien genutzten Alkane seitens 'Bu₃SiM; s. weiter unten). Die angesprochene Umsetzung 'Bu₃Si' + RH \rightarrow 'Bu₃SiH + R' endotherm (CH-Dissoziationsenergie > SiH-Dissoziationsenergie), so daß 'Bu₃Si' in Alkanen unterhalb Raumtemperatur praktisch nur in Superdisilan übergeht und sich erst oberhalb dieser Temperatur in steigendem Ausmaße unter Bildung von Supersilan stabilisiert. Dabei wirkt 'Bu₃Si-Si'Bu₃ ab ca. 50°C im Sinne von Gleichung (4b) selbst als Supersilylradikal-Quelle [14-16], weshalb sich 'Bu₃Si -Radikale bei erhöhter Temperatur (100°C) in Alkanen letzten Endes in 'Bu₃SiH und Folgeprodukte von R' verwandeln (z.B. in Cycloheptan: Supersilylcycloheptan 'Bu₃SiC₇H₁₃; in Abwesenheit eines Solvens: Disupersilylisobuten ($^{\prime}Bu_{3}SiCH_{2}$)₂-C=CH₂ [39]).

2.2. Ether und Amine als Solvenzien

Bereits in einer Stunde, also rascher als in Heptan, setzt sich Lithiumstaub bzw. flüssiges Kalium mit 'Bu₃SiBr in siedendem THF (ca. 65°C) vollständig gemäß Gleichg. (2) zu den THF-Addukten ¹Bu₃SiLi(THF)_n und ¹Bu₃SiK(THF)_n um, während eine quantitative Reaktion von Natriumstücken mit Bu₃SiBr in THF bei 65°C oder in Bu₂O bei 80°C zu den Addukten 'Bu₃SiNa(THF)_n bzw. ⁷Bu₃SiNa(OBu₂)_n wegen der vergleichsweise kleinen, sich zudem mit NaBr bedeckenden Na-Oberfläche mehrere Stunden benötigt. Die Lithium- und Natriumverbindungen liegen nach längerem Belassen im Ölpumpenvakuum als Supersilyllithium-Tetrahydrofuran(1/2) 'Bu SiLi(THF), Supersilylnatrium-Tetrakydrofuran(1/2) 'Bu₃SiNa(THF)₂ und SupersilyInatrium-Dibutylether (1/2) 'Bu₃- $SiNa(OBu_2)_2$ vor (s. weiter unten sowie [3,14-16,28,29,35,36,40]), während die Kaliumverbindung unter diesen Bedingungen ihr THF verliert.

Die Bildung von 'Bu₃SiM (M = Li, Na, K) in THF und Bu₂O führt — trotz der im Vergleich zu gesättigten Kohlenwasserstoffen viel höheren Acidität von Ethern - unter den Bedingungen der 'Bu₃SiM-Synthesen noch nicht zu Supersilan 'Bu₃SiH. Dieser Sachverhalt geht offensichtlich wie im Falle der Hypersilylalkalimetalle [31-33] auf die sterische Abschirmung der negativ geladenen Siliciumzentren zurück. In der Tat deprotonieren weniger sperrige Silylalkalimetalle ihre chemische Umgebung so leicht, daß ihre Herstellung schwierig werden kann, während etwa 'Bu, SiNa in Tetrahydrofuran selbst bei 100°C noch sehr langsam gemäß Gleichg. (5) unter Deprotonierung von THF zu den Zerfallsprodukten des deprotonierten Reaktionsmediums thermolysiert (s. hierzu auch weiter unten). Hierbei werden wohl die Protonen des koordinativ gebundenen Donors angegriffen, da sie saurer als die von ungebundenem THF sind (möglicherweise erfolgt die Protonenübertragung sogar intramolekular).

¹Bu₃SiM
$$\xrightarrow{\Delta}$$
 ¹Bu₃SiH + \swarrow_{O} M
(THF-Addukt) \downarrow (5)
¹Bu₃SiH + CH₂=CH₂ + CH₂=CH-OM

In 'Bu₃SiNa(THF)₂ läßt sich THF durch 'stärkere' Donoren wie etwa Pentamethyldiethylentriamin, 18-Krone-6 oder Kryptofix-222 verdrängen, so daß es zur Bildung von Supersilylnatrium-Pentamethyldiethylentriamin (1/1) 'Bu₃SiNa(PMDTA), Supersilylnatrium-18-Krone-6 (1/1) 'Bu₃SiNa(18-C-6) oder Supersilylnatrium-Kryptofix-222 (1/1) [']Bu₃SiNa(C222) kommt (s. weiter unten). Allerdings zersetzt sich letzteres Addukt (und Analoges gilt für das aus [']Bu₃SiK in Benzol und Kryptofix-222 erhältliche Addukt *Supersilylkalium-Kryptofix 222* (1/1) [']Bu₃SiK(C222)) so leicht unter [']Bu₃SiH-Bildung, daß die Verbindung noch nicht vollständig charakterisiert werden konnte.

2.3. Aromaten als Solvenzien

Während die Supersilylalkalimetalle 'Bu₃SiM (M = K, Rb, Cs) in gesättigten Kohlenwasserstoffen unlöslich sind (s. oben), gehen die betreffenden Verbindungen in dem ungesättigten Kohlenwasserstoff Benzol in Lösung. Hiernach bieten sich Aromaten als Solvenzien für eine Darstellung dieser Zielverbindungen gemäß Gleichg. (2) an. Tatsächlich wirken aber Supersilylalkalimetalle hinsichtlich Benzol rascher deprotonierend und reduzierend als hinsichtlich Ethern, was die Verwendung von Aromaten als Lösungsmittel für die angestrebten Synthesen einschränkt. Immerhin läßt sich durch Reaktion von 'Bu₃SiBr mit Kalium in Benzol (eingesetzt als Deuterobenzol C₆D₆) bei 58°C Supersilylkalium-Benzol (1/3) 'Bu₃SiK(Benzol)₃ neben Supersilan 'Bu₃SiD und Supersilylbenzol 'Bu₃SiC₆D₅ gewinnen. Einfacher erhält man das Benzoladdukt durch Auflösen des aus 'Bu₃SiBr und Kalium in Heptan gebildeten Supersilylkaliums in Benzol.

Die erwähnten Nebenprodukte 'Bu₃SiD und 'Bu₃SiC₆D₅ entstehen auch — allerdings langsamer beim Erwärmen von 'Bu₃SiNa in C₆D₆ auf 100°C. Ersteres Produkt stellt im Sinne von Gleichung (6a) möglicherweise die Folge einer Deprotonierung des Benzols dar, während sich letzteres Produkt etwa gemäß Gleichung (6b) auf dem Wege einer Elektronenübertragung von 'Bu₃Si⁻ auf C₆D₆ bilden könnte (vgl. hierzu die Möglichkeit einer Elektronenübertragung von Me₃Si⁻ auf Naphthalin [41]). Darüber hinaus wäre es denkbar, daß sich die Zwischenstufe ['Bu₃Si'/MC₆D₆'] nach Gleichung (6c) unter Bildung von 'Bu₃SiD und MC₆D₅ stabilisiert bzw. daß sich 'Bu₃SiD und MC₆D₅ gemäß Gleichung (6d) in 'Bu₃SiC₆D₅ und MD verwandeln (vgl. hierzu Lit. [30]).

Die erwähnten Reaktionsabläufe gehen wohl von den Addukten 'Bu₃SiM(Benzol), aus, die sich möglicherweise unter intramolekularer Wanderung eines Protons bzw. eines Elektrons in Supersilan und Phenylalkalimetalle bzw. in das Addukt ' Bu_3Si' -MC₆D₆ umwandeln.

3. Charakterisierung donorfreier und donorhaltiger Supersilylalkalimetalle 'Bu 3SiM

3.1. Supersilylalkalimetalle als Feststoffe

Die donorfreien Supersilylalkalimetalle 'Bu₃SiM (im Falle von M = Rb, Cs nicht in Substanz isoliert) bilden gelbe (M = Li/Na/K: gelb/orangegelb/blaßgelb), bis auf die Lithiumverbindung nicht unzersetzt schmelzende, gegen sichtbares Licht stabile hydrolyseund luftempfindliche Feststoffe (die Kaliumverbindung ist pyrophor). 'Bu₃SiLi und 'Bu₃SiNa liegen im Kristall - verknüpft über Si · · · M · · · Si-Kontakte - als Dimere 1 vor (vgl. Röntgenstrukturanalysen, unten) und weisen damit den gleichen Bau auf wie die mit ihnen verwandten, farblosen donorfreien Hypersilylalkalimetalle (Me₃Si)₃SiM [31-33] (vgl. hierzu auch hexameres Me₃SiLi [30]). Da sich in letzteren Fällen der Strukturtyp beim Übergang von der Li- über die Kwohl bis zur Cs-Verbindung nicht ändert, ist es denkbar, daß auch alle Supersilylalkalimetalle im Kristall als Dimere 1 vorliegen. Andererseits spricht die deutliche Abnahme der Löslichkeit der Supersilylalkalimetalle in gesättigten Kohlenwasserstoffen wie Heptan beim Ubergang von ('Bu₃SiLi)₂ und ('Bu₃SiNa)₂ (sehr gut bis gut löslich) zu 'Bu₃SiK, 'Bu₃SiRb und 'Bu₃SiCs (praktisch unlöslich) für zusätzliche intermolekulare Wechselwirkungen im Falle letzterer Supersilylalkalimetalle (vgl. hierzu ein ähnliches Verhalten der insgesamt etwas heptanlöslicheren Hypersilylalkalimetalle [31-33]).

Die aus 'Bu₁SiM und Ethern wie THF, Bu₂O, 18-Krone-6 oder Aminen wie PMDTA, Kryptofix-222 sowie Aromaten wie Benzol hervorgehenden, in organischen Medien gut löslichen, gelben bis roten, hydrolyse- und oxidationsempfindlichen donorhaltigen Supersilylalkalimetalle 'Bu₃SiM(Do)_n (M/Do = Li/THF: fast farblos; Na/THF, Bu₂O, PMDTA: blaßgelb; Na/18-C-6: orangegelb; Na, K/C222: rot; K/Benzol: orangerot) schmelzen nur unter Zersetzung. Die Verbindungen 'Bu₃SiNa(THF)₂, 'Bu₃SiNa(PMDTA) und 'Bu₃SiK(Benzol)₃ liegen im Kristall als Monomere 2, 3 und 4 vor, wobei im Falle ersterer Verbindung jeweils zwei Moleküle über intermolekulare CH₃ ···· Na-Wechselwirkungen zu Paaren aggregiert sind (vgl. Röntgenstrukturanalysen, unten). Von 'Bu₃SiLi ließ sich ebenfalls ein Addukt mit zwei THF-Donoren und von 'Bu₃SiNa zudem ein Addukt mit zwei Bu₂O-Donoren gewinnen, denen wohl ebenfalls Strukturen vom Typus 2 zukommen. Kristalle von Addukten aus 'Bu₃SiNa und 18-Krone-6, die sich für eine Röntgenstrukturanalyse geeignet hätten, ließen sich

bisher nicht erzeugen. Es ist aber bei der hohen Basizität des Anions 'Bu₃Si⁻ anzunehmen, daß die Verbindung im Sinne der Formel 5 einen Si ··· Na-Kontakt aufweist und daß der Kronenether nur eine Seite der Natriumionen koordiniert. Vollständig getrennt im Sinne der Formel 6 sind aber Si und M möglicherweise in den 1:1 Addukten aus 'Bu₃SiM (M = Na, K) und Kryptofix-222, welche wegen ihrer hohen Zersetzlichkeit (s. oben) ebenfalls nicht kristallin erhalten werden konnten.

3.2. Supersilylalkalimetalle in Lösung

Während sich die leichteren Supersilylalkalimetalle $({}^{t}Bu_{3}SiM)_{2}$ (M = Li, Na) sowohl in Alkanen wie Heptan als auch in Aromaten wie Benzol, Toluol oder in Ethern wie THF, Bu₂O sowie Aminen wie PMDTA lösen, sind die schwereren Supersilylalkalimetalle (M = K, Rb, Cs) nur in letzteren Medien, nicht aber in Alkanen löslich. Somit vermögen nur ungesättigte Kohlenwasserstoffe oder Donorsolvenzien die zwischenmolekularen Bindungen der schweren Supersilylalkalimetalle aufzubrechen.

Erkenntnisse über den Bau der Supersilylalkalimetalle in Lösung lassen sich insbesondere aus Strukturen der aus den betreffenden Medien kristallisierenden festen Supersilylalkalimetalle (s. unten), aus Bestim-

mungen der Molmassen der Verbindungen in Lösung (bisher nicht durchgeführt) und aus ²⁹Si-NMR-Spektren der gelösten Proben (vgl. Tabelle 1) gewinnen. Beispielsweise kristallisieren 'Bu₃SiLi sowie 'Bu₃SiNa aus Heptanlösung in Form von ('Bu₃SiLi)₂ sowie ('Bu₃SiNa)₂ aus, was die Existenz von 'Bu₃SiLi- sowie 'Bu₃SiNa-Dimeren auch im Medium Heptan nahelegt.

Bezüglich des Aggregationszustands der Verbindungen 'Bu₃SiLi und 'Bu₃SiNa in Benzollösung, aus der 'Bu₃Sik in Form von 'Bu₃Sik(Benzol)₃ kristallisiert, ist andererseits anzumerken, daß sich -- wegen des in Richtung K, Na, Li abnehmenden Ionenradius und zunehmenden polarisierenden Einflusses der Alkalimetalle - die Stabilität der Benzoladdukte in Richtung 'Bu₃SiK(Benzol)₃, 'Bu₃SiNa(Benzol)_n, 'Bu₃SiLi(Benzol), verringert, entsprechend einer Verschiebung der Gleichgewichte ['Bu₃SiM] + $nC_6H_6 \rightleftharpoons$ 'Bu₃SiM- $(C_6H_6)_n$ nach links. Demgemäß konnten von den Verbindungen 'Bu₃SiNa bzw. 'Bu₃SiLi, die sich in Benzol wohl dimer auflösen, bisher keine Benzoladdukte in kristallisierter Form erhalten werden (selbst 'Bu₁SiK(Benzol)₃ gibt sein Benzol im Vakuum noch leicht ab).

In Etherlösungen liegen die Supersilylalkalimetalle 'Bu₃SiM (M = Li, Na, K) wohl in monomerer Form vor, wie aus der Existenz des monomer kristallisierenden Etherats 'Bu₃SiNa(THF)₂ folgt (bezüglich 'Bu₃SiLi(THF)₂ vgl. auch den Experimentellen Teil). Allerdings enthalten die Silylalkalimetalle in THF- bzw. Bu₂O-Lösung sicher mehr als 2 Donormoleküle (eine Trennung der SiM-Bindungen erscheint hierbei unwahrscheinlich, da die Deprotonierungsaktivität der Etheraddukte deutlich geringer ist als die der Addukte mít Kryptanden, s. unten). Im Ölpumpenvakuum geben die Addukte alle bis auf 2 Donormoleküle ab. 'Bu₃SiNa(OBu₂), bzw. 'Bu₃SiK(THF), lassen sich im Vakuum sogar gänzlich von ihren Donoren befreien, wogegen sich THF des Addukts 'Bu₃SiLi(THF)₂ weder im Hochvakuum 'abkondensieren' noch mit Benzol 'abschleppen' läßt. Offensichtlich sinkt also die Affinität der Supersilylalkalimetalle zu Ethern - wie bei Verknüpfung von M⁺ und OR₂ über Ionen-Dipol-

Kontakte auch zu erwarten ist — mit zunehmender Ordnungszahl des Alkalimetalls der Verbindungen, entsprechend einer Verschiebung der Gleichgewichte $['Bu_3SiM]_{fest} + n$ THF \rightleftharpoons 'Bu₃SiM(THF)_n nach links. Die in Richtung 'Bu₃SiLi → 'Bu₃SiCs sinkende Stabilität der THF- und wachsende Stabilität der Benzol-Addukte folgt auch aus dem Prinzip der harten und weichen Basen und Säuren, wonach härteres THF bevorzugt härteres Li⁺, weicheres Benzol bevorzugt weicheres Cs⁺ koordiniert.

Die ²⁹Si-NMR-Signale der in C₆D₆ gelösten donorfreien Supersilylalkalimetalle 'Bu₃SiM (vgl. Tabelle 1) erscheinen in einem sehr schmalen, auf ähnliche Bindungsverhältnisse (elektrovalente SiM-Bindungen) deutenden Bereich. Erstaunlicherweise entspricht letzterer dem Verschiebungsbereich der ²⁹Si-NMR-Signale der in $C_6 D_6$ gelösten Supersilylhalogenide 'Bu₃SiX $(\delta = 20.8/33.7/41.3/48.0$ für X = F/Cl/Br/I). In dieser Eigenschaft unterscheiden sich die Super- von den verwandten Hypersilylverbindungen, welche sehr unterschiedliche Verschiebungsbereiche der ²⁹Si-NMR-Signale für $(Me_3Si)_3SiX$ ($\delta = 33$ bis -58) und $(Me_1Si)_3SiM$ ($\delta = -186$ bis -179) der in C_6D_6 gelösten Proben aufweisen [31-33]. Während im Falle von 'Bu₃SiX in $C_6 D_6$ die ²⁹Si-NMR-Signale mit abnehmender Elektronegativität von X zu tieferem Feld verschoben werden (für (Me₁Si)₃SiX trifft das Umgekehrte zu), beobachtet man im Falle von 'Bu₃SiM mit abnehmender Elektronegativität (zunehmender Elektropositivität) von M beim Übergang von 'Bu₃SiLi zu 'Bu₃SiNa sowohl in C_7H_{10} als auch in C_6D_6 zwar ebenfalls einen Tieffeldshift (Analoges ist für den Übergang von 'Bu₃SiNa zu 'Bu₃SiK in C₇H₁₆ zu erwarten), dann aber beim Übergang von 'Bu, SiNa zu 'Bu₃SiK in C₆D₆ einen Hochfeldshift der ²⁹Si-NMR-Signale (Tabelle 1). Dies deutet auf vergleichbare Strukturen von 'Bu₃SiM in C_6D_6 für M = Li, Na (Dimere) und auf eine hiervon verschiedene Struktur von 'Bu₃SiM in $C_6 D_6$ für M = K (Monomer). Tatsächlich sprechen die sehr ähnlichen ²⁹Si-NMR-Signallagen von 'Bu₃SiLi in Heptan und Benzol dafür, daß 'Bu₃SiLi in C₆D₆ wie in C₇H₁₆ dimer vorliegt (die Konzentrationsab-

Tabelle 1 ²⁹Si-NMR-Signallagen donorfreier und donorhaltiger Supersilylalkalimetalle bei Raumtemperatur in unterschiedlichen Lösungsmitteln (verdünnte

"Si-&-Werte von	('Bu ₃ SiM) ₂ in nC ₇ H ₁₀	('Bu ₃ SiM) ₂ in C ₆ D ₆	('Bu ₁ SiM) ₂ in THF	'Bu,SiM(THF), * in C, D.
M = Li	35.9	36 °	33.1	33.1
Na	41.7	49.0		33.1 42.5
ĸ	> 41.7? "	39.0	180	4.2 4.2
		0.210	30.0	

⁴ 'Bu₃SiNa(Do)_n mit Do = nBu₂O/PMDTA/18-Krone-6/Kryptofix-222: $\delta = 47.6$ (C₆D₆, RT)/43.1 (C₆D₅CD₃, -70°C)/43.1 (C₆D₅CD₃, -60°C)/35.2 (C, D, RT).

^b Hochfeldshift bei Probenkonzentrierung bis $\delta = 29$.

"Bu₃SiK(THF)₂ ist nicht isolierbar.

Konzentrierte Lösung. Tieffeldshift bei Probenverdünnung bis $\delta = 45$.

^d Wegen geringer Probenlöslichkeit selbst bei 80°C nicht meßbar.

7

hängigkeit der ²⁹Si-NMR-Signallage von 'Bu₃SiLi in C₄D₄ bleibt noch unverstanden), während ein Ersatz der betreffenden Lösungsmittel gegen THF, in welchem 'Bu₃SiLi monomer existiert (s. oben), ersichtlicherweise mit einem Hochfeldshift der ²⁹Si-NMR-Signale verbunden ist (Tabelle 1). Da 'Bu₃SiK sowohl in C_6D_6 als auch in THF monomer strukturiert ist, unterbleibt dieser Shift, und die ²⁹Si-NMR-Signale weisen in beiden Lösungsmitteln eine ähnliche Verschiebung auf. Erstaunlicherweise sind die Signallagen von 'Bu₃SiNa in C_7H_{16} und C_6D_6 — entgegen der oben entwickelten Vorstellung eines gleichen Polymerisationsgrades der Verbindung in beiden Medien — unterschiedlich (Tabelle 1). Allerdings wird kein Hochfeldshift der Signale beobachtet, den man beim Übergang von Dimeren in C_7H_{16} zu Monomeren in C_6D_6 erwarten würde, sondern ein Tieffeldshift. Er könnte auf eine Koordination der Na-Ionen in dimerem 'Bu₃SiNa mit Benzol zurückgehen. Da 'Bu₃SiM in THF und $^{\prime}Bu_{3}SiM(THF)_{2}$ in C₆D₆ sowohl für M = Li wie für Na monomer existieren, sind die ²⁹Si-NMR-Verschiebungen beider Li- bzw. beider Na-Verbindungen vergleichbar (Tabelle 1).

3.3. Charakteristische Eigenschaften der Supersilylalkalimetalle im Zusammenhang mit deren Nachweisen durch Protolyse, Silylierung und Oxidation

Die weiter oben angesprochene, auf die **Basizität** von 'Bu₃Si⁻ zurückgehende Protolyse der Supersilylalkalimetalle mit Säuren HY wie Alkoholen oder Carbonsäuren gemäß Gleichg. (7) macht die Existenz der betreffenden Verbindungen indirekt sichtbar.

$$'Bu_{1}SiM + HY \rightarrow 'Bu_{3}SiH + MY$$
(7)

Aber selbst Stoffe mit sehr geringer Protonenaktivität wie Ether oder Aromaten setzen sich -- gegebenenfalls bei erhöhter Temperatur — mit Supersilylalkalimetallen im Sinne der Gleichg. (7) um. Beispielsweise zerfällt 'Bu₃SiNa in THF bei 100°C in 45 h zu ca. 50% gemäß Gleichg. (5). Obwohl man eine Erhöhung der Deprotonierungsgeschwindigkeit mit zunehmender Acidität der zu deprotonierenden Verbindungen HY erwarten würde, beträgt die Halbwertszeit der Thermolyse von 'Bu SiNa in saurerem THF bei 85°C ca. 175 h und in weniger saurem C₆D₆ unter gleichen Bedingungen nur ca. 60 h (bezüglich der Produkte und des Thermolysewegs in letzterem Falle vgl. Gleichg. (6)). Tatsächlich werden aber wohl nicht freie, sondern am Alkalimetall koordinierte Donoren deprotoniert, für die andere Aciditäten gelten. 'Freies' Supersilanid 'Bu₃Si⁻ der Verbindung M(C222)⁺ 'Bu₃Si⁻ deprotoniert THF nicht nur bereits bei Raumtemperatur, sondern — der Erwartung entsprechend — auch rascher als Benzol. In diesem Zusammenhang sei noch erwähnt, daß die Thermolyse von 'Bu₃SiK in C₆D₁₂ bei 100°C ausschließlich zu 'Bu₃SiH führt. Somit deprotoniert die — in Alkanen nur wenig lösliche — Verbindung 'Bu₃SiK nicht den Kohlenwasserstoff, sondern seine eigenen 'Bu-Gruppen (vgl. hierzu die in ('Bu₃SiM)₂ vorliegenden CH₃ \cdots M-Kontakte, unten).

Ein weiterer indirekter Nachweis der Existenz von Supersilylalkalimetallen besteht in ihrer Silylierung mit Me₃SiY (Y z.B. F, Cl, Br, I, N₃) in organischen Medien gemäß Reaktion (8). Letztere läßt sich auch als Verdrängung von siliciumgebundenem Y⁻ durch das Nucleophil ⁷Bu₃Si⁻ beschreiben:

$$Bu_3SiM + Me_3SiY \rightarrow Bu_3Si - SiMe_3 + MY$$
 (8)

Allerdings muß die Umsetzung mit Me_3SiN_3 in Donorsolvenzien wie THF durchgeführt werden, da 'Bu_3SiM in gesättigten Kohlenwasserstoffen wie Pentan hinsichtlich Me_3SiN_3 als Base wirkt und sich bei tiefen Temperaturen an das Azid unter Bildung des Triazenids $Me_3Si-N=N-NNa(Si'Bu_3)$ addiert, welches bei Raumtemperatur unter N_2 -Eliminierung in $Me_3Si NNa(Si'Bu_3)$ übergeht [40,42].

Zum Nachweis der Existenz von Supersilylalkalimetallen läßt sich schließlich deren Wirkung als **Reduktionsmittel** nutzen, da ihre Oxidation in organischen Lösungsmitteln bei Raumtemperatur und darunter vielfach glatt zu Superdisilan führt. Letztere Verbindung entsteht etwa gemäß Gleichg. (9) durch Einwirkung von Salzen M'Y wie NO⁺ BF₄⁻⁻ [35,36] oder Ag⁺NO₃⁻, in welchen die Kationen Oxidationsmittel darstehen (vgl. hierzu Lit. [41]).

$$2'Bu_3SiM + 2M'Y \rightarrow 'Bu_3Si-Si'Bu_3 + 2M' + 2MY$$
(9)

In gleicher Weise führt Tetracyanethylen (TCNE) (NC)₂ $C = C(CN)_2$ Supersilylalkalimetalle in Superdisilan über (Reduktion zu TCNE²⁻). Sauerstoff als allgegenwärtiges Oxidationsmittel setzt sich ebenfalls bereits bei tiefen Temperaturen mit Supersilylalkalimetallen 'Bu₃SiM in organischen Medien um. Allerdings bildet sich hierbei neben ('Bu₃Si)₂ hauptsächlich 'Bu₃SiOM (z.B. im Falle von 'Bu₃SiNa und 'Bu₃SiK in zehnfacher Menge).

Schließlich vermögen — wie weiter oben besprochen wurde — auch Supersilylhalogenide 'Bu₃SiX hinsichtlich 'Bu₃SiM als Oxidationsmittel zu wirken, falls X ein schwereres Halogen — insbesondere Iod darstellt. Beispielsweise entsteht aus 'Bu₃SiNa und 'Bu₃SiI in Heptan bei 100°C langsam (in Stunden) 'Bu₃Si-Si'Bu₃ wohl auf den Wegen (4a) und (4b) (das gebildete Disilan thermolysiert seinerseits langsam unter den Reaktionsbedingungen). Keine Disilanbildung beobachtet man allerdings beim Erwärmen von 'Bu₃SiK und 'Bu₃SiI in Heptan bei 100°C. Offensichtlich ist also 'Bu₃SiK selbst in siedendem Heptan unlöslich. Daß andererseits die Umsetzung von 'Bu₃SiI mit Kalium in siedendem Heptan zu 'Bu₃SiK stets mit der Bildung von 'Bu₃Si-Si'Bu₃ verbunden ist, läßt sich nur mit einer gewissen Heptanlöslichkeit von 'Bu₃SiK 'in statu nascendi' erklären.

4. Röntgenstrukturanalysen von ^tBu₃SiLi, ^tBu₃SiNa, ^tBu₃SiNa(THF)₂, ^tBu₃SiNa(PMDTA) und ^tBu₃SiK(Benzol)₃

4.1. Konstitution und Konformation donorfreier und donorhaltiger Supersilylalkalimetalle

Bezüglich der röntgenographisch geklärten Strukturen der aufgeführten Moleküle vgl. die Formeln 1 bis 4 und die Abbn. 1-5.

Zentrales Strukturelement der dimeren donorfreien Supersilylalkalimetalle 'Bu₃SiLi und 'Bu₃SiNa ist ein näherungsweise gleichseitiger, planarer viergliederiger SiMSiM-Ring (Abbn. 1 und 2). Die Siliciumatome sind mit 3 'Bu-Resten und 2 M-Atomen verknüpft, so daß ihnen die bei Supersilylgruppen bisher nicht beobachtete Koordinationszahl 5 zukommt. Die Alkalimetallatome bilden außer zu 2 Si-Atomen zusätzlich intramolekulare Kontakte zu 1 CH₃-Gruppe (M = Li) bzw. zu 2 CH₃-Gruppen (M = Na) aus und weisen mithin die Koordinationszahl 3 bzw. 4 auf. Dabei geht die Erhöhung der Zähligkeit ersichtlicherweise auf die Vergrößerung der Atomradien in Richtung Li \rightarrow Na zurück. Die um Silicium angeordneten Atome liegen an den Ecken von

Abb. 1. Struktur von (¹Bu, SiLi), im Kristall (Lokalsymmetrie: D_{1d} ; ORTEP-Plot: thermische Schwingungsellipsoide 25%). Die Wasserstoffatome wurden der Übersichtlichkeit halber bis auf 6 H-Atome weggelassen. Ausgewählte Bindungslängen [Å] und -winkel [°] mit Standardabweichungen: Si1-Li 2.67(1), Si1-Li(a) 2.63(1), Si1-C1 1.971(3), Si1-C5 1.975(4), Si1-C9 1.961(4), Li-C3 2.54(1); Li...H(C3) 2.059/2.214; Li...Li 2.40(2); Si1-Li-Si1a 126.2(4), Li-Si1-Li(a) 53.8(4), C1-Si1-C5 108.8(2), C1-Si1-C9 108.6(2), C5-Si1-C9 109.7(2); berechnete Torsionswinkel: Si1a-Li-Si1-Li(a) 0, Si1a-Li-Si1-C 1 138.1, Si1a-Li-Si1-C5 -113.8, Si1a-Li-Si1-C9 25.4,

Abb. 2. Struktur von (¹Bu₃SiNa)₂ im Kristall (Lokalsymmetrie: D_{3d} ; ORTEP-Plot; thermische Schwingungsellipsoide 25%). Die Wasserstoffatome wurden der Übersichtlichkeit halber bis auf 12 H-Atome weggelassen. Die Na-Atome sind symmetrisch fehlgeordnet, so daß 3 (¹Bu₃SiNa)₂-Moleküle im Kristall vorliegen, in welchen die Na-Lagen zu jeweils 1/3 besetzt sind. Ausgewählte Bindungslängen [Å] und -winkel [°] mit Standardabweichungen: Si1-Na1 3.073(4), Si1-Na1a 3.060(4), Si1-C1 1.978(3), Na1-C2a 3.129(8); Na1...H (C2a) 2.471; Na...Na 2.86(6); Si1-Na1-Si1a 124.6(1), Na1-Si1-Na1a 55.4(1), C1-Si1-C1a 107.32(8); berechnete Torsionswinkel: Si1a-Na1-Si1-Na1a 0, Si1a-Na1-Si1-C1 83.9, Si1a-Na1-Si1-C1a = 169.5, Si1a-Na1-Si1-C1b - 61.9.

Polyedern zwischen einer verzerrten trigonalen Bipyramide und einer verzerrten quadratischen Pyramide. Andererseits bilden die M-Atome zusammen mit den koordinierten Resten eine verzerrte trigonale Pyramide mit Li an der Spitze bzw. ein verzerrtes Tetraeder mit Na in der Mitte. Die 'Bu-Substituenten des einen Si-Atoms in ('Bu₃SiM)₂ stehen hinsichtlich der 'Bu-Substituenten des anderen Si-Atoms auf Lücke.

Zwischen den Dimeren der Supersilylalkalimetalle ('Bu₃SiM)₂ (M = Li, Na; Verbrückung über Si \cdots M \cdots Si-Kontakte) bestehen im Kristall ausschließlich normale van-der-Waals-Beziehungen (CH₃ \cdots M > 3.5 Å). Daß Analoges — wie weiter oben besprochen wurde — zwar für die erwähnten Verbindungen, aber wohl nicht mehr für 'Bu₃SiM (M = K, Rb, Cs) gilt, geht offensichtlich darauf zurück, daß eine Verknüpfung der Dimeren über intermolekulare CH₃ \cdots M-Kontakte aus sterischen Gründen erst im Falle der größeren Alkalimetalle möglich wird.

Als Folge der in Richtung Supersilyl \rightarrow Hypersilyl abnehmenden Gruppensperrigkeit beobachtet man im Falle der Hypersilylalkalimetalle (Me₃Si)₃SiM, die in ähnlicher Weise wie 'Bu₃SiLi und 'Bu₃SiNa zu Dimeren verknüpft sind, bereits für [(Me₃Si)₃SiNa]₂ zwischenmolekulare CH₃ ··· M-Beziehungen, deren Zahl in Richtung [(Me₃Si)₃SiK]₂ noch zunimmt [31-33]. Derartige Kontakte fehlen aber noch im Falle von [(Me₃Si)₃SiLi]₂. Auch bei Trisylalkalimetallen (Me₃Si)₃CM (Trisyl hat eine ähnliche räumliche Ausdehnung wie Supersilyl) beobachtet man in Richtung (Me₃Si)₃CLi \rightarrow (Me₃Si)₃CCs eine wachsende Tendenz zur Ausbildung zwischenmolekularer CH3 ···· M-Kontakte; und zwar bildet Trisyllithium wie Super- und Hypersilyllithium Dimere [(Me₃Si)₃SiLi]₂ ohne intramolekulare CH3 ···· M-Kontakte, wogegen Trisylkalium und -rubidium im Sinne von ··· M⁺ \cdots (Me₃Si)₃C⁻ \cdots M⁺ \cdots (Me₃Si)₃C⁻ \cdots polymeren Bau besitzen [34] (die Strukturen von donorfreiem (Me₃Si)₃CNa und (Me₃Si)₃CCs sind noch unbekannt). Charakteristisches Strukturelement der Anionen (Me₃Si)₃C⁻ ist hierbei ein planares Si₃C-Gerüst. Hierin spiegelt sich die - verglichen mit der Planarisierungsenergie des pyramidalen Silanids R₃Si⁻ geringere Energie der Einebnung des pyramidalen wieder (vgl. hierzu planares Methanids R_3C^- (Me₃Si)₃N und pyramidales (Me₃Si)₃P [43]).

Die monomeren donorhaltigen Supersilylalkalimetalle 'Bu₃SiNa(THF)₂, 'Bu₃SiNa(PMDTA) und 'Bu₃SiK(Benzol)₃ weisen zentrale SiM-Gruppen auf (Abbn. 3–5). Erstere Verbindung ist hierbei anders als letztere beiden Addukte über zwei intermolekulare CH₃ \cdots Na-Kontakte lose zu Paaren verknüpft (Abb. 3). Die Siliciumatome sind jeweils mit 3 'Bu-Gruppen und 1 M-Atom verknüpft. Sie weisen demgemäß die Koordinationszahl 4 auf, die auch für die Alkalimetallatome

der Addukte aufgefunden wird, welche im Falle von ['Bu₃SiNa(THF)₂]₂ mit 1 Si-Atom, 2 O-Atomen sowie 1 CH₃-Gruppe, im Falle von 'Bu₃SiNa(PMDTA) mit 1 Si-Atom sowie 3 N-Atomen und im Falle von 'Bu₃SiK(Benzol)₃ mit 1 Si-Atom sowie 3 Benzol-Molekülen verknüpft sind. Sowohl die Si- als auch die M-Atome weisen eine verzerrt-tetraedrische Ligandenkoordination auf, wobei allerdings das Na-Atom in ['Bu₃SiNa(THF)₂]₂ fast planar von einem 'Bu₃Si-Rest und 2 THF-Molekülen umgeben wird. Die O-Atome der THF-Donoren werden nahezu planar von 1 Na- und 2 C-Atomen umgeben, woraus folgt, daß die Ether-Moleküle im wesentlichen über Ionen-Dipol-Bindungen mit den Alkalimetall-Kationen verknüpft sind. Die siliciumgebundenen Reste stehen bezüglich der mit M koordinierten Gruppen auf Lücke.

Unter den THF-Addukten der Supersilylalkalimetalle wurde bisher nur die Supersilylnatriumverbindung 'Bu₃SiNa(THF)₂ röntgenstrukturanalytisch untersucht. Wie dem im Experimentellen Teil Besprochenen aber zu entnehmen ist, kommt der in Nadeln kristallisierenden Lithiumverbindung eine analoge Zusammensetzung 'Bu₃SiLi(THF)₂ wie der Natriumverbindung zu. Allerdings erscheint in letzterem Falle eine Zusammen-

Abb. 3. Struktur von ['Bu₃SiNa(ThF)₂]₂ im Kristall (Lokalsymmetrie: C₁; ORTEP-Plot; thermische Schwingungsellipsoide 25%). Die Wasserstoffatome wurden der Übersichtlichkeit halber bis auf 6 H-Atome weggelassen. Ausgewählte Bindungslängen [Å] und -winkel [°] mit Standardabweichungen: Si1-Na1 2.919(1), Si1-C1 1.990(2), Si1-C5 1.991(2), Si1-C9 2.002(2), Na1-O1 2.320(2), Na1-O2 2.325(2), Na1-C11a 3.096(3); Na1...H(C11a) 2.736, 2.797, 3.073; C1-Si1-C5 106.97(9), C1-Si1-C9 106.88(8), C5-Si1-C9 106.79(9), O1-Na-O2 101.37(7), O1-Na1-Si1 123.28(6), O2-Na1-Si1 131.79(6) (Winkelsumme um Na. 356.44), C13-O1-C16 109.3(2), C13-O1-Na1 116.9(1), C16-O1-Na1 133.7(1) (Winkelsumme um O1: 359.9), C17-O2-C20 105.6(2), C17-O2-Na1 123.6(2), C20-O2-Na1 127.4(1) (Winkelsumme um 356.6); berechnete Torsionswinkel: O1-Na1-Si1-C1 172.5, O1-Na1-Si1-C5 -68.1, O1-Na1-Si1-C9 52.5, O2-Na1-Si1-C1 - 33.0, O2-Na1-Si1-C5 86.4, O2-Na1-Si1-C9 -153.0.

Abb. 4. Struktur von 'Bu₃SiNa(PMDTA) im Kristall (Lokalsymmetrie: C₁; ORTEP-Plot; thermische Schwingungsellipsoide 25%). Die Wasserstoffatome wurden der Übersichtlichkeit halber weggelassen. Ausgewählte Bindungslängen [Å] und -winkel [°] mit Standardabweichungen: Si-Na 2.967(2), Si-C1 2.000(4), Si-C5 1.984(4), Si-C9 2.000(4), Na-N1 2.505(4), Na-N2 2.492(3), Na-N3 2.532(4); Si-Na-N1 122.0(1), Si-Na-N2 128.1(1), Si-Na-N3 132.1(1), N1-Na-N2 73.4(1), N1-Na-N3 104.1(1), N2-Na-N3 132.1(1), N1-Na-N2 73.4(1), N1-Na-Si-C1/C5/C9 - 159.1/81.4/-40.6, N2-Na-Si-C1/C5/C9 107.4/ = 12.1/ = 134.1, N3-Na-Si-C1/C5/C9 3.0/ = 116.6/121.4.

lagerung zweier Moleküle über $CH_3 \cdots Li$ -Kontakte aus sterischen Gründen weniger wahrscheinlich. Da die Verbindung 'Bu₃SiK(THF)_n ihr koordiniertes THF sehr leicht abgibt, ist die Isolierung von Kristallen des betreffenden Addukts für eine Röntgenstrukturanalyse bisher nicht gelungen.

Die hierdurch dokumentierte und auch erwartete (s. oben) Abnahme der Tendenz von 'Bu₃SiM zur Solvatation mit THF bei wachsender Ordnungszahl von M findet ihre Parallele bei den Hypersilylalkalimetallen (Me₁Si)₁SiM, unter denen bisher THF-Addukte der Lithium und Cäsiumverbindung röntgenstrukturanalytisch auf geklärt wurden. Auffallenderweise kristallisiert (Me₃Si)₃SiLi anders als 'Bu₃SiLi nicht mit zwei, sondern mit drei THF-Donoren (tetraedrisch mit 1 (Me₁Si)₁Si-Gruppe und 3 THF-Molekülen koordiniertes Lithium [44]). Dieser Sachverhalt läßt sich wiederum mit der in Richtung Supersilyl → Hypersilyl abnehmenden Gruppensperrigkeit erklären. Die Cäsiumverbindung bildet andererseits ein Addukt der Formel [(Me₃Si)₃SiCs(THF)_{0.5}]₂ (1 THF verbrückt beide Cs-Atome im viergliederigen SiCsSiCs-Ring von dimerem Hypersilylcäsium [31-33]). Unter den THF-Addukten der Trisylalkalimetalle (Me₃Si)₃CM wurde bisher nur die Verbindung (Me₃Si)₃CLi(THF)₂ röntgenstrukturanalytisch aufgeklärt. Sie weist anders als 'Bu,SiLi(THF), (s. oben) salzartigen Bau im Sinne von $[Li(THF)_4]^+Li[C(SiMe_3)_3]_2^-$ auf (vgl. hierzu auch $[Na(OEt_2)(TMEDA)_2]^+ Na[C(SiMe_3)_1]_2^- [45,46]; Lithi$ ate und Natrate mit Super- bzw. Hypersilylliganden sind bisher unbekannt).

Die Zunahme der Tendenz von ¹Bu₃SiM zur Solvatation mit Benzol bei wachsender Ordnungszahl von M (s. oben) findet ebenfalls ihre Parallele bei den Hypersilyl- sowie Trisylalkalimetallen $(Me_3Si)_3SiM$ sowie $(Me_3Si)_3CM$. Dementsprechend konnten bisher nur von Verbindungen mit schweren Alkalimetallen Benzoladdukte kristallin erhalten werden. Unter ihnen entsprechen dem oben erwähnten Benzoladdukt ¹Bu₃SiK(Benzol)₃ des Supersilylkaliums strukturell die Benzoladdukte $(Me_3Si)_3SiK(Benzol)_3$ und $(Me_3Si)_3CCs(Benzol)_3$ des Hypersilylkaliums [31-33] und Trisylcäsiums [34] (in $(Me_3Si)_3SiNa(Benzol)_{0.5}$ besetzt Benzol nur Plätze zwischen dimerem Hypersilylnatrium [31-33]).

4.2. Bindungslängen und Bindungswinkel donorfreier und donorhaltiger Supersilylalkalimetalle

Gemäß Tabelle 2, welche wichtige Bindungslängen und -winkel der röntgenstruktur analytisch geklärten donorfreien und donorhaltigen Supersilylalkalimetalle ⁴Bu₃SiM wiedergibt (vgl. hierzu auch die Legenden der Abbn. 1–5), betragen die mittleren Längen der *Silicium Alkalimetall-Bindungen* SiLi, SiNa und SiK 2.65, 2.98 und 3.38 Å (ähnliche SiM-Abstände wurden für donorfreie und -haltige Hypersilylalkalimetalle (Me₃Si)₃SiM aufgefunden [31–33]). Trotz der sicher hohen Polarität der SiM-Bindungen (der ionische Charakter von CM-Bindungen in Alkylalkalimetallen beträgt etwa 90% [47]), lassen sich die experimentell ermittelten SiM-Ab-

Abb. 5. Struktur von ⁶Bu₃SiK(C_6D_6)₁ im Kristall (Lokalsymmetrie in Richtung C₃: ORTEP-Plot: thermische Schwingungsellipsoide 25%). Die Wasserstoffatome wurden der Übersichtlichkeit halber weggelassen. Ausgewählte Bindungslängen [Å] und -winkel [°] mit Standardabweichungen: K1-Si1 3.378(1), Si1-C19 1.998(3), Si1-C23 1.998(3), Si1-C27 1.990(3), K-C_{Bencol} im Bereich 3.48 bis 3.52, C-C-Abstände in Benzol im Bereich 1.31 bis 1.41, C19-Si1-C23 106.0(1), C19-Si-C27 106.4(1), C23-Si1-C27 105.5(1), (Flächennormale C1-C6)-K-Si-C19/C27/C23 65.0/ - 52.0/ -172.0, (Flächennormale C7-C12)-K-Si-C23/C19/C27 68.5/ - 54.5/ - 171.5, (Flächennormale C13-C18)-K-Si-C27/C23/C19 68.1/ - 51.9/ - 174.9.

Tabelle 2

Bindungslängen [Å] und Bindungswinkel [°] in einigen donorfreien und donorhaltigen Supersilylalkalimetallen ⁴Bu₃SiM (Mittelwerte bei Vorliegen mehrerer vergleichbarer Gruppierungen)

'Bu ₃ SiM(Do) _n	M	Si-M	C-Si	C-Si-C
['Bu ₃ SiLi], ^a	Li	2.648	1.969	109.0
['Bu ₃ SiNa], ^b	Na	3.067	1.978	107.3
['Bu ₃ SiNa(THF) ₂], *	Na	2.919	1.994	106.9
'Bu ₃ SiNa(PMDTA)	Na	2.968	1.993	106.5
'Bu ₃ SiK(Benzol) ₃	K	3.378	1.995	106.0

^a Li-Si-Li 53.8; Si-Li-Si 126.2; Li...Li 2.40; CH₃...Li 2.540.

^b Na–Si–Na 55.4; Si–Na–Si 124.6; Na…Na 2.86; CH₃…Na 3.129. ^c CH₃…Na 3.096.

stände erstaunlich gut als Summen der kovalenten Radien der Bindungspartner (Si: 1.17; Li: 1.48; Na: 1.83; K: 2.21 Å [47]) darstellen: 2.65, 3.00 und 3.38 Å. Legt man andererseits der SiM-Bindung im Sinne der Formulierung Si⁻M⁺ 100%igen Ionencharakter zugrunde, so berechnet sich der Si⁻-Radius aus den gemessenen SiM-Abständen, abzüglich der Radien für M⁺ der Koordinationszahl 4 (Li⁺: 0.73; Na⁺: 1.13; K⁺: 1.51 Å [43]) nährungsweise übereinstimmend zu 1.88 Å. Wie aus Tabelle 2 zudem hervorgeht, hängen die SiM-Abstände geringfügig von der Zahl und Art der Si- und M-koordinierten Liganden ab. Dies ist offensichtlich eine Folge eines gewissen Einflusses der Donoren auf die SiM-Bindungspolarität.

Einen Hinweis auf die angesprochene Bindungspolarität liefert der Kohlenstoff-Silicium-Kohlenstoff-Winkel der Supersitylalkalimetalle unter der Annahme, daß das freie Elektronenpaar im ungebundenen Silylanion R₃Si: ⁻ ein s-Orbital des Siliciums besetzt, so daß die CSi-Bindungen aus Wechselbeziehungen der drei senkrecht zueinander angeordneten p-Orbitale des Siliciums mit geeigneten Orbitalen der Reste R hervorgehen [48]. In der Tat liegt der HSiH-Winkel des Silylkaliums H₃SiK mit ca. 94° fast bei 90° [43]. Die CSiC-Winkel der donorfreien und donorhaltigen Supersilylalkalimetalle 'Bu₁SiM (SiM-Bindungen überwiegend elektrovalent) sind zwar — bedingt durch die starke räumliche Ausdehnung der 'Bu-Gruppen - deutlich größer als 90° (Tabelle 2), aber immer noch etwas kleiner als die CSiC-Winkel in Verbindungen des Typs $'Bu_3SiX$ (X = elektronegativer Rest; SiX-Bindungen überwiegend kovalent), die normalerweise im Bereich 110-112° liegen [14-16]. Entsprechend der zu erwartenden Zunahme der Bindungspolarität in Richtung SiLi, SiNa, SiK verkleinert sich der CSiC-Winkel von 109 über 107 nach 106°. In gleicher Richtung vergrößert sich die Länge der Kohlenstoff-Silicium-Bindung von 1.97 über 1.99 nach 2.00 Å. Von Interesse wären in diesem Zusammenhang natürlich auch die Bindungsverhältnisse im 'freien' Supersilylanion 'Bu₃Si⁻, das möglicherweise in 'Bu₃SiM(C222) mit M = Na, K vorliegt (im Tri-tert-butylphosphan 'Bu₃P, das mit 'Bu₃Si⁻

isoelektronisch ist, betragen die CPC-Winkel 107.4° [49]).

Die Silicium-Alkalimetall-Silicium-Winkel der Dimeren ('Bu₃SiLi)₂ und ('Bu₃SiNa)₂ sind mit 126.2° und 124.6° (Tabelle 2) die kleinsten aller bisher beobachteten Supersilyl-Element-Supersilyl-Winkel (zum Vergleich: (' Bu_3Si), SiBr, 141.5° [14–16]; ('Bu₃Si)₂Al-Al(Si'Bu₃)₂ 128.0° [37,38]). Die aufgefundenen, bereits sehr nahe bei 120° liegenden SiMSi-Winkel (M = Li, Na) sprechen für die Existenzmöglichkeit einer — bisher vergeblich gesuchten — Supersilylverbindung mit drei an ein Element gebundenen Supersilylgruppen. In diesem Zusammenhang wären natürlich Kenntnisse über die Struktur von Supersilylkalium von hohem Interesse. Läge nämlich 'Bu₃SiK analog 'Bu₃SiLi und 'Bu₃SiNa dimer vor, so müßte die Verbindung einen noch kleineren, d.h. näher bei 120° liegenden SiMSi-Winkel (M = K) aufweisen.

Die Ursache für die Ausbildung der kleinen SiMSi-Winkel im Falle M = Li, Na dürfte folgende sein: Eine SiMSi-Winkelvergrößerung im planaren viergliederigen SiMSiM-Ring der Dimeren ['Bu₃SiM]₂ müßte zu einer Verkleinerung des *Alkalimetall-Silicium-Alkalimetall-Winkels* (gefunden: 53.8° und 55.4°), verbunden mit einer MM-Annäherung führen. Mithin wirkt hier dem winkelvergrößernden sterischen Druck der M-gebundenen 'Bu₃Si-Gruppen die winkelverkleinernde elektrostatische Abstoßung der M-Kationen entgegen. In der Tat sind die *Alkalimetall-Alkalimetall-Abstände* in den betreffenden Dimeren mit 2.40 und 2.86 Å (Tabelle 2) erstaunlich klein (zum Vergleich: NaNa-Abstand in HypersilyInatrium [(Me₃Si)₃SiNa]₂ ca. 3.15 Å [31-33]).

Hingewiesen sei schließlich auf kürzere intra- bzw. intermolekulare Methyl-Alkalimetall-Abstände in ('Bu₃SiM)₂ (M = Li, Na) bzw. 'Bu₃SiNa(THF)₂, die mit 2.54, 3.13 und 3.10 Å für reale, wenn auch schwache CH₃...M-Kontakte sprechen, die wohl vorwiegend elektrostatischer Natur sind (tatsächlich handelt es sich natürlich um H...M-Kontakte von Methylwasserstoffen zu den Alkalimetalionen, die in den vorliegenden Fällen im Mittel 2.137, 2.471 und 2.869 Å betragen).

5. Experimenteller Teil

Alle Untersuchungen wurden unter Ausschluß von Luft und Wasser durchgeführt. Als Schutzgas der Synthesen 'Bu₃SiM von verwendeten wir Argon (99.9996%ig). Für die Darstellung der Na-, K-, Rb-, Cs-Verbindung kann allerdings auch sauerstofffreier Stickstoff (99.9996%ig) als Schutzgas eingesetzt werden. Die Reaktionsmedien wurden mit Natrium in Gegenwart von Benzophenon vorgetrocknet und vor Gebrauch über diesen Stoffen abdestilliert. Zur Verfügung standen 'BuLi in Pentan, Alkalimetalle (Lithium-Pulver, purum, 99% von Fluka), Me₃SiX (X = Cl. Br, I, N₃), SiHCl₃, KHF₂, KF, Cl₂, Br₂, I₂, NOBF₄, AgNO₃, TCNE, PMDTA, 18-Krone-6, Kryptofix-222. Nach Literaturvorschrift wurde dargestellt Me₃SiF [50].

Für NMR-Spektren dienten Multikerninstrumente Jeol FX 90 Q (${}^{1}H/{}^{13}C/{}^{29}Si/{}^{19}F/{}^{7}Li/{}^{23}Na: 89.55/22.49/17.75/84.27/34.81/23.65$ MHz), Jeol GSX 270 (${}^{1}H/{}^{13}C/{}^{29}Si/{}^{7}Li: 270.17/67.94/53.67/105.000$ MHz) und Jeol GSX 400 (${}^{1}H/{}^{13}C/{}^{29}Si/{}^{19}F:$ 399.78/100.53/79.31/376.14 MHz). Die ${}^{29}Si$ -NMR-Spektren wurden mit Hilfe eines INEPT-Pulsprogramms mit empirisch optimierten Parametern für die ${}^{7}Bu$ -Substituenten aufgenommen. — Bezüglich der Synthese der Verbindungen (${}^{1}Bu_{3}Si)_{2}M$ (M = Zn, Cd, Hg) und ihrer Reaktion mit Natrium vgl. [51].

5.1. Synthese von Supersilan 'Bu₃SiH

Die Darstellung von 'Bu₃SiH erfolgte nicht — wie von uns beschrieben [37,38] — aus SiF₄ und 'BuLi. sondern in Anlehnung an Literaturvorschriften [21,22] aus SiHCl₃ und 'BuLi gemäß Gleichg. (1). — (a) 250 ml (2.47 mol) SiHCl₃ wurden zu 4.93 mol 'BuLi in 3.08 | Pentan so rasch zugetropft, daß das Pentan gerade siedet (Zutropfzeit ca. 12 h). Die Destillation des Reaktionsgemischs liefert bei 168°C 366.1 g (2.05 mol. 83%) farbloses, wenig hydrolyseempfindliches Di-tertbutylchlorsilan 'Bu, SiHCI [21,22]. - 'H-NMR (C, D,. iTMS): $\delta = 0.99$ (s, Si'Bu₂), 4.32 (s; SiH), $- {}^{13}C{}^{T}H{}^{3}$ -NMR ($C_0 D_0$, iTMS); $\delta = 20.80$ (2 (Me₁), 27.20) $(2CMe_3)$ = ²⁹Si-NMR (C₆D₆, eTMS). $\delta = 24.4$ $(Si'Bu_2)$, - (b) 173.7g (0.971 mol) 'Bu₂SiHCl werden zusammen mit 77.8 g (0.9% mol) KHF2 und 30.0 g (0.517 mol) KF 5 h auf 70°C erhitzt. Die Kondensation des Reaktionsgemischs im ziehenden Ölpumpenvakuum in eine auf - 78°C gekihlte Vorlage liefert 143 g (0.886 mol, 91%) farbloses, wenig hydrolyseempfindliches, bei 70°C siedendes Di-tert-butylfluorsilan [']Bu₂SiHF [21,22]. — [']H NMR ($C_{0}D_{0}$, iTMS). $\delta = 0.98$ (d; ${}^{3}J_{HF} = 1.2 \text{ Hz}; \text{ Si'Bu}_{2}$), 4.32 (d; ${}^{2}J_{HF} = 483 \text{ Hz}; \text{ SiH}$). SiH). $-{}^{13}\text{C}({}^{1}\text{H})$ -NMR (C, D, iTMS): $\delta = 19.40$ (d; ${}^{2}J_{CF} = 11.23 \text{ Hz}; 2CMe_{3}$), 26.50 (d; ${}^{3}J_{CF} = 1.47 \text{ Hz}; 2700 \text{ Hz}$ $2CMe_3$). — ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 23.5$ (d; ${}^{1}J_{SiF} = 305.7$ Hz; Si'Bu₂). — ¹⁹F-NMR (CCl₄, eCCl₃F in (CD₃)₂CO): $\delta = -187.7$ (breit, SiF). — (c) Zu 143.7 g (0.883 mol) 'Bu₂SiHF in 300 ml Heptan werden 0.920 mol 'BuLi in 575 ml Pentan getropft. Nach Abkondensation von Pentan bei 55 mbar bringt man das Reaktionsgemisch 6 h zum Sieden und destilliert dann das Heptan bis 95°C/150 mbar ab. Die Kondensation des Rückstands im ziehenden Ölpumpenvakuum in eine auf - 78°C gekühlte Vorlage liefert 152.5 g (0.762 mol; 86%) farbloses, bei ca. 40°C schmelzendes und bei 145°C/100 mbar siedendes Tri-tert-butylsilan (Supersilan) 'Bu₃SiH [21,22]. — 'H-NMR (C₆D₆, iTMS): $\delta = 1.12$ (s; Si'Bu₃), 3.50 (s; SiH); (THF, iTMS): $\delta = 1.13$ (s; Si'Bu₃), verdeckt (s; SiH); (CDCl₃, iTMS): $\delta = 1.19$ (s; Si'Bu₃), 3.30 (s; SiH). — ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 21.00$ (3CMe₃), 30.88 (3CMe₃).— ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 17.8$ (Si'Bu₃).

5.2. Synthesen von Supersilylhalogeniden 'Bu₃SiX

Die Darstellung von 'Bu₃SiX (X = Cl, Br, I) erfolgte in Anlehnung an Literaturvorschriften [21,22], die Synthese von 'Bu₃SiF durch Fluoridierung von 'Bu₃SiX.

(a) 0.512 g (1.83 mmol) ¹Bu₃SiBr werden mit 0.632 g (4.63 mmol) KHF₂ 16 h in siedendem MeOH umgesetzt. Laut ¹H-NMR vollständige Reaktion zu ¹Bu₃SiF. Nach Abkondensieren aller im Ölpumpenvakuum flüchtigen Anteile führt die Destillation des Rückstands bei 150°C/100 mbar zu 0.374 g (1.71 mmol; 93%) farblosem, wachsartigem, bei 40-42°C schmelzendem *Tri-tert-butylfluorsilan* (Supersilylfluorid) ¹Bu₃SiF [21,22]. — ¹H-NMR (C₆D₆, iTMS): $\delta = 1.10$ (d; ³J_{HF} = 0.98 Hz; Si¹Bu₃). — ¹³C[¹H}-NMR (C₆D₆, iTMS): $\delta = 22.52$ (d; ²J_{CF} = 12.7 Hz; 3CMe₃), 29.23 (d; ³J_{CF} = 1.5 Hz; 3CMe₃). — ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 20.8$ (d; ¹J_{SiF} = 312.5 Hz; Si¹Bu₃). — ¹⁹F-NMR (C₆D₆, eCCl₃F in (CD₃)₂CO): $\delta = -184.5$ (breit, SiF).

(b) Durch eine auf -30° C gekühlte Lösung von 10 g (50 mmol) 'Bu₃SiH in 100 ml Pentan leitet man so lange Chlor, bis das Reaktionsgemisch eine gelbgrüne Farbe annimmt. Nach Abkondensation aller flüchtigen Anteile im Ölpumpenvakuum führt die Sublimation des Rückstands bei 100°C/ÖV zu 11.5 g (49.0 mmol, 98%) farblosem, bei 116-118°C schmelzendem *Tri-tert-butylchlorsilan* (Supersilylchlorid) 'Bu₃SiCl [21.22]. – 'H-NMR (C₀D₀, iTMS): $\delta = 1.12$ (s, Si'Bu₃). – '¹³C{¹H}-NMR (C₀D₀, iTMS): $\delta = 24.40$ (3CMe₃), 29.90 (3CMe₃). – ²⁹Si-NMR (C₀D₀, eTMS): $\delta = 33.7$ (Si'Bu₃).

(c) Zu einer auf 0°C gekühlten Lösung von 8.67 g (43.3 mmol) 'Bu₃SiH in 100 ml Pentan werden unter Lichtausschluß zügig 2.3 ml (44.9 mmol) Br₂ getropft. Nach Abkondensation aller flüchtigen Anteile im Ölpumpenvakuum führt die Sublimation des Rückstands bei 80°C/ÖV zu 10.83 g (38.8 mmol; 90%) farblosem, bei 167°C schmelzendem *Bromtri-tert-butylsilan* (Supersilylbromid) 'Bu₃SiBr [21,22]. — ¹H-NMR (C₆D₆, iTMS): $\delta = 1.13$ (s; Si'Bu₃). — ¹³C(¹H)-NMR (C₆D₆, iTMS): $\delta = 24.41$ (3CMe₃), 30.00 (3CMe₃). — ⁵Si-NMR (C₆D₆, eTMS): $\delta = 41.3$ (Si'Bu₃).

(d) Ein auf die Temperatur des flüssigen Stickstoffs gekühltes und mit 6.01 g (30.0 mmol) 'Bu₃SiH, 7.61 g (30.0 mmol) I_2 , 30 ml CHCl₃ gefülltes, evakuiertes und abgeschlossenes Bombenrohr wird 200 h auf 60°C erhitzt. Man extrahiert das Reaktionsgemisch mit einer alkalischen 5%igen Thiosulfatlösung, wäscht die organische Phase dreimal mit destilliertem Wasser nach, trocknet sie mit CaSO₄ und filtriert sie anschließend. Nach Abkondensieren aller im Ölpumpenvakuum flüchtigen Anteile führt die Sublimation des Rückstands bei 100°C/ÖV zu 6.70 g (20.5 mmol; 68%) farblosem, bei 221°C schmelzendem *Tri-tertbutyliodsilan* (Supersilyliodid) [21,22]. — ¹H-NMR (C₆D₆, iTMS): $\delta = 1.16$ (s; Si'Bu₃). — ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 24.60$ (3 CMe₃), 30.70 (3 CMe₃). — ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 48.0$ (Si'Bu₃).

5.3. Darstellung donorfreier Supersilylalkalimetalle 'Bu₃SiM

Die Darstellung von donorfreiem 'Bu₃SiM (M = Li, Na, K, Rb, Cs) erfolgt zweckmäßig durch Reaktion von 'Bu₃SiX (X = Br, I) mit M in Heptan.

(a) Ein unter Argon stehendes Gemisch aus 2.00 g (7.19 mmol) 'Bu₃SiBr und 0.50 g (72.0 mmol) Lithiumstaub in 40 ml Heptan wird 24 h zum Sieden (ca. 100°C) erwärtmt. Laut ¹H-NMR über 90%iger Umsatz zu 'Bu₃SiLi (die Lösung enthält noch 6% Edukt 'Bu₃SiBr und 3% Superdisilan ('Bu₃Si)₂). Nach Abfiltrieren des grauen Niederschlags (Li, LiBr) von der intensiv gelben Reaktionslösung und Einengen des Filtrats auf ca. 20 ml kristallisieren aus letzterem bei -23°C 0.950 g (4.60 mmol, 64%) gelbes, sehr hydrolyse- und oxidations-empfindliches, bei 137–139°C schmelzendes, in Heptan sehr gut lösliches (c maximal 0.78 mol/L) Tri-tert-butylsilyllithium (Supersilyllithium) 'Bu₃SiLi. — ¹H-NMR ($C_{0}D_{0}$, iTMS): $\delta = 1.30$ (s; Si'Bu₃). - ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 23.66$ (3 CMe₃), 34.09 (³CMe₃). - ²⁹Si-NMR (C₆D₆, eTMS): δ um 32 (breit: Lage konzentrationsabhängig. $\delta = 35/29$ für stark verdünnte/konzentrierte Lösung; Si'Bu₃); (*n*-C₂H₁₆, eTMS): $\delta = 35.9$ (Si'Bu₃); (Toluol, eTMS): $\delta = 37.4$ (Si'Bu₃). - ⁷Li-NMR (C₆D₆, eLiCl, 1.5 molar in D₂O): $\delta = -1.9$ (Halbhöhenbreite 30.5 Hz; SiLi). Gef. C, 66.57; H, 12.79. C₁₂ H₂₇ LiSi (206.4) ber.: C, 69.84; H, 13.19. - Röntgenstrukturanalyse: s. unten. — Anmerkung: Lösungen von ('Bu₁SiLi), in Heptan/Benzol/Toluol/THF sind orangegelb/hellgelb/orangegelb/orangefarben.

(b) Ein unter Stickstoff stehendes Gemisch aus 7.34 g (26.3 mmol) 'Bu₃SiBr und 6.00 g (260 mmol) kleingeschnittenem Natrium in 100 ml Heptan wird 3 h zum Sieden (ca. 100°C) erwärmt. Laut ¹H-NMR praktisch quantitativer Umsatz zu 'Bu₃SiNa (die Lösung enthält noch 2% Superdisilan ('Bu₃Si)₂). Nach Abfiltrieren des grauen Niederschlags (Na, NaBr) von der intensiv gelben Reaktionslösung und Einengen des Filtrats auf ca. 25 ml kristallisieren aus letzterem bei -23° C 3.40 g (15.3 mmol; 58%) orangegelbes, sehr hydrolyse- und oxidationsempfindliches, ab 112°C zersetzliches, in Heptan gut lösliches (*c* maximal 0.12 mol/L) *Tri-tert-butylsilylnatrium* (Supersilylnatrium) 'Bu₃SiNa. — ¹H-NMR (C₆D₆, iTMS): $\delta = 1.40$ (s; Si'Bu₃). — ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 23.83$ (3CMe₃), 34.25 (3CMe₃). — ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 49.0$ (breit; Lage konzentrationskonstant; Si'Bu₃); (*n*-C₇H₁₆, eTMS): $\delta = 41.7$. — Gef. C, 60.99; H, 11.68. C₁₂H₂₇NaSi (222.4) ber.: C, 64.80; H, 12.23. — Röntgenstrukturanalyse: s. unter.. — Anmerkung: Lösungen von ('Bu₃SiNa)₂ in Heptan/Benzol/To-luol/THF sind orangefarben/tiefgelb/orangegelb/orangefarben.

(c) Ein unter Argon stehendes Gemisch aus 1.71 g (6.12 mmol) 'Bu₃SiBr und 2.7 g (69 mmol) kleingeschnittenem Kalium in 30 ml Heptan wird 2 h auf 80°C erhitzt, wobei sich die Lösung unter Bildung eines grauen Niederschlags nach gelb verfärbt. Laut 'H-NMR quantitativer Umsatz von 'Bu₃SiBr (die Lösung enthalt noch Spuren von Supersilan). Nach Zugabe von 20 ml Benzol, um 'Bu₃SiK zu lösen, filtriert man den Niederschlag ab und zieht alle im Ölpumpenvakuum flüchtigen Anteile ab. Es verbleiben 0.788 g (3.30 mmol, 54%) blaßgelbes, extrem hydrolyse- und oxidationsempfindliches (pyrophores), heptanunlösliches, benzollösliches Tri-tert-butylsilylkalium (Supersilylkalium) 'Bu₃SiK. — ¹H-NMR (C₆D₆, iTMS): $\delta =$ 1.44 (s; Si'Bu₃). ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta =$ 24.30 (3 CMe_3), 34.80 (3 CMe_3). — ²⁹Si-NMR (C_6D_6 , eTMS): $\delta = 39.0$ (breit; Lage konzentrationskonstant; Si'Bu₁). — Röntgenstrukturanalyse: s. unten. — Anmerkung: Lösungen von ('Bu₃SiK), in Heptan/Benzol/Toluol/THF sind gelb/orangefarben/ gelb/orangefarben.

(d) Ein unter Argon stehendes Gemisch aus 1.2 g (3.7 mmol) 'Bu₃Sil/1.0 g (11.7 mmol) Rubidium/15 ml Heptan (A) bzw. aus 1.8 g (5.5 mmol) 'Bu₃Sil/1.0 g (7.5 mmol) Cäsium/15 ml Heptan (B) wird 2.5 h auf 100°C (A) bzw. 15 h auf 60°C (B) erhitzt, wobei sich die Lösungen unter Bildung von Niederschlägen nach braun verfärben. Die Niederschläge bestehen aus M. MI und 'Bu₃SiM (M = Rb, Cs; Methanolyse zu 'Bu₃SiH; Reaktion mit Me₃SiCl zu 'Bu₃Si-SiMe₃), die Lösungen enthalten — laut ¹H-NMR (C₆D₆, iTMS) — neben Spuren von Verbindungen, bei denen es sich um 'Bu₃SiM handeln könnte ($\delta = 1.52$) nur Superdisilan ('Bu₃Si)₂ und Supersilan 'Bu₃SiH. Die Reaktionsgemische wurden bisher nicht weiter aufgearbeitet.

5.4. Darstellung donorhaltiger Supersilylalkalimetalle 'Bu₃SiM(Do)_n

Die Darstellung von etherhaltigem 'Bu₃SiM(OR₂)_n (M = Li, Na) erfolgt zweckmäßig durch Reaktion von 'Bu₃SiBr mit M in dem betreffenden Ether OR₂, die Darstellung von anderen donorhaltigen Verbindungen 'Bu₃SiM(Do)_n (M hier Na) durch Reaktion der Etherate mit den betreffenden Donoren Do.

(a) Ein unter Argon stehendes Gemisch aus 1.25 g (4.49 mmol) 'Bu₃SiBr und 0.40 g (58 mmol) Lithium-

staub in 10 ml THF wird 1 h zum Sieden (65°C) erhitzt, wobei sich ein grauer Feststoff und eine orangefarbene Lösung bilden. Laut ¹H-NMR vollständiger Umsatz zu 'Bu₃SiLi(THF), (die gleiche Verbindung bildet sich aus 'Bu₃SiBr und Lithium naphthalenid in THF bei Raumtemperatur). Nach Abkondensieren aller im Ölpumpenvakuum flüchtigen Anteile, Aufnahme des Rückstands in 20 ml Pentan. Abfiltrieren unlöslicher Anteile (Li, LiBr), Nachwaschen der unlöslichen Anteile mit 10 ml Pentan, Einengen des Filtrats auf ca. 10 ml, kristallisieren aus dem Filtrat bei -23°C 1.13 g (3.22 mmol; 72%) sehr hydrolyse- und oxidationsempfindliches Tri-tert-butylsityllithium-Tetrahydrofuran (1/2) ¹Bu₃SiLi(THF), in feinen, blaßgelben, fast farblosen Nadeln. — ¹H-NMR (C_6D_6 , iTMS): $\delta = 1.48$ (s; Si^tBu₃). 1.19 (m; 4 CH₂CH₂O von 2 THF), 3.27 (m; 4 CH₂O von 2 THF). $-^{13}C{^{1}}H$ -NMR (C₆D₆, iTMS): $\delta = 23.58$ (3CMe₃), 34.46 (3CMe₃), 25.35 (4 CH_2CH_2O), 67.96 (4 CH_2O). - ²⁹Si-NMR (C₆D₆, iTMS): $\delta = 33.1 \text{ Si'Bu}_3$). — ⁷Li-NMR (C₆D₆, eLiCl, 1.5 molar in D₂O): $\delta = -2.9$ (Halbhöhenbreite 47.6 Hz; SiLi); (THF, eLiCl in D_2O); $\delta = 0.065$ (Halbhöhenbreite 6.0 Hz; SiLi). - Anmerkung: Die vergleichsweise geringe $\delta(^{7}Li)$ -Halbhöhenbreite von $^{7}Bu_{3}Li(THF)_{2}$ wäre mit dem Vorliegen von $[Li(THF)_4]^+[('Bu_3Si_2)Li]^-$ vereinbar. Allerdings müßten dann zwei ⁷Li-Signale aufgefunden werden. Auch spricht die gute Löslichkeit der Verbindung in Alkanen gegen letztere Struktur.

(b) Ein unter Stickstoff stehendes Gemisch aus 28.0 g (100 mmol) 'Bu₃SiBr und 20 g (870 mmol) kleingeschnittenem Natrium in 100 ml THF wird 18 h zum Sieden (65°C) erhitzt, wobei sich ein grauer Feststoff und eine rotbraune Lösung bilden. Laut 'H-NMR vollständiger Umsatz zu 'Bu₃SiNa(THF)_n. Nach Abkondensieren aller im Ölpumpenvakuum flüchtigen Anteile, Aufnahme des Rückstands in 30 ml Pentan, Abfiltrieren unlöslicher Anteile (Na. NaBr), Abkondensieren des Pentans und längerem Belassen des Rückstands im Hochvakuum verbleiben über 33 g (> 90 mmol; > 90%) sehr hydrolyse- und oxidationsempfindliches, benzollösliches (c bis 1.8 mol/L) Tri-tertbutylsilylnatrium – Tetrahydrofuran (1/2) 'Bu₃SiNa(THF)₂ [1,37,38] als blaßgelber Feststoff. Aus einer auf -25°C gekühlten Lösung von ca. 10 mmol 'Bu₃SiNa(THF)₂ in 20 ml Heptan fällt das Addukt langsam in blaßgelben, Kristallen aus. — ¹H-NMR $(C_6D_6, iTMS)$: δ um 1.5 (s; Lage konzentrationsabhängig: $\delta = 1.6/1.4$ für verdünnte/konzentrierte Lösung; Si'Bu₃), 1.34 (m; 4 CH₂CH₂O von 2 THF), 3.42 (m; 4 CH_2O von 2 THF). $-^{13}C(^{1}H)$ -NMR $(C_6 D_6, \text{ iTMS}): \delta = 24.05 (3CMe_3), 34.59 (3CMe_3),$ 25.79 (4 CH_2CH_2O), 67.78 (4 CH_2O), - ²⁹Si-NMR $(C_6D_6, eTMS)$: δ um 44 (Lage konzentrationsabhängig: $\delta = 45/43$ für verdünnte/konzentrierte Lösung: Si'Bu₃); (THF, eTMS): $\delta = 42.7$ (breit: Si'Bu₃). ---

²³Na-NMR ($C_6 D_6$, iNaCl in $D_2 O$): $\delta = 24.6$ (Halbhöhenbreite 1200 Hz; SiNa). — Röntgenstrukturanalyse: s. unten. — Anmerkung: Rührt man die THF-Lösung während der Umsetzung von 'Bu₃SiBr und Na zu 'Bu₃SiNa(THF)_n kräftig und schüttelt dadurch gebildetes NaBr von den Natriumstücken ab, so ist die Umsetzung bereits nach 8 h und weniger beendet.

(c) Ein unter Stickstoff stehendes Gemisch aus 2.80 g (10.0 mmol) 'Bu₃SiBr und 2.12 g (92.2 mmol) kleingeschnittenem Natrium in 40 ml Bu₂O wird 18 h auf 80°C erhitzt. Laut 'H-NMR vollständiger Umsatz zu 'Bu₃SiNa(OBu₂)_n. Nach Abfiltrieren unlöslicher Anteile (Na, NaBr) und Abkondensieren aller im Ölpumpenvakuum flüchtigen Anteile verbleiben 4.2 g (8.7 mmol, 87%) sehr hydrolyse- und oxidationsempfindliches Tri-tert-butylsilylnatrium-Dibutylether(1/2) 'Bu₃SiNa(OBu₂)₂ [3] als hellgelber Feststoff, der zu 'Bu₃SiH protolysiert und mit Me₃SiCl zu 'Bu₃Si-SiMe₃ umgesetzt werden kann. — ¹H NMR ($C_6 D_6$, iTMS). $\delta = 1.45$ (s; Si'Bu₃), 0.84/1.22/1.39/3.14 (t/m/m/t, 4 CH₃CH₂CH₂CH₂O). — ¹³C(¹H)-NMR (C₆D₆, iTMS): $\delta = 24.08$ (3 CMe₃), 34.45 (3 CMe₃), 14.00/19.47/32.08/70.75 (4 CH₃CH₂CH₂CH₂CH₂O). ²⁹Si-NMR (C_6D_6 , eTMS: $\delta = 47.6$ (Si'Bu). — Anmerkung: Beläßt man 'Bu₃SiNa(OBu₂)₂ mehrere Stunden im Hochvakuum, so geht die Verbindung in donorfreies SupersilyInatrium uber.

(d) Ein unter Augon stehendes Gemisch aus 0.097 g (0.35 mmol) 'Bu₃SiBr und 0.9 g (7.7 mmol) kleingeschnittenem Kalium m 0.8 ml THF wird 1 h auf 58°C erwärmt. Laut ²⁹Si-NMR der gelben THF-Lösung hat sich alles 'Bu₃SiBr zu *Tri-(ert-butylsilyl-kalium-Tetrahydrofuran* (1/n) 'Bu₃SiK(THF)_n umgesetzt. Im Zuge der Abkondensation flüchtiger Anteile der Reaktionslösung verliert 'Bu₃SiK(THF)_n sein koordiniertes THF, so daß blaßgelbes 'Bu₃SiK (s. oben) zurückbleibt. Zur NMR-spektroskopischer Untersuchung des THF-Addukts von 'Bu₃SiK wurde Supersilylkalium in [D₈]-THF gelöst: ¹H-NMR (iTMS): $\delta = 0.998$ (s; Si'Bu₃). $- {}^{13}C{}^{1}H{}$ -NMR (iTMS): $\delta = 23.5$ (3 CMe₃), 34.0 (3 CMe₃). $- {}^{29}Si$ -NMR (eTMS): $\delta = 38.0$ (Si'Bu₃).

(e) Zu 1.80 mmol 'Bu₃SiNa(THF)₂ (gewonnen durch Abkondensieren flüchtiger Anteile von 'Bu₃SiNa in THF im ÖV) werden 0.38 ml (1.80 mmol) PMDTA gegeben. Nach Abziehen aller im Ölpumpenvakuum flüchtigen Anteile und Aufnahme des Rückstands in 10 ml Pentan/5 ml Diethylether kristallisieren aus der Lösung bei -23° C 0.538 g (1.36 mmol; 76%) sehr hydrolyse- und oxidationsempfindliches, ab 87°C zersetzliches *Tri-tert-butylsilylnatrium-Pentamethyldiethylentriamin* (1/1) 'Bu₃SiNa(PMDTA) in blaßgelben Quadern aus [14–16]. — ¹H-NMR (C₆D₆; iTMS): $\delta =$ 1.57 (s; Si'Bu₃), 1.67 (breit; 2 CH₂CH₂), 1.85 (s; 2 NMe₂), 1.87 (s; NMe). — ¹³C{^rH}-NMR (C₆D₆, iTMS): $\delta =$ 24.16 (3 CMe₃), 34.79 (3 CMe₃), 5.68 (NMe), 43.89 (2 NMe₂), 53.95/57.17 (2 CH₂CH₂). — ²⁹Si-NMR ([D₈]-Toluol, -70°C, eTMS): $\delta = 47.6$ (breit; erst bei tiefer Temperatur sichtbar; Si'Bu₃). — Röntgenstrukturanalyse: s. unten.

(f) Nach Einengen einer blutroten Lösung von 0.582 g (2.45 mmol) 'Bu₃SiK in 10 ml Benzol auf 5 ml erhält man bei 12°C 0.207 g (0.44 mmol; 18%) orangerotes, kristallines *Tri-tert-butylsilylkalium–Benzol* (1/3) 'Bu₃SiK(Benzol)₃. In analoger Weise scheiden sich aus einer blutroten Lösung von 0.126 g (0.53 mmol) 'Bu₃SiK in 0.6 ml C₆D₆ nach längerem Stehenlassen bei Raumtemperatur orangerote 'Bu₃SiK(C₆D₆)₃-Kristalle ab. Bezüglich der NMR-Spektren der Verbindung vgl. die NMR-Spektren von 'Bu₃SiK in C₆D₆ (oben), bezüglich der Röntgenstrukturanalyse s. unten. — *Anmerkung*: Im Argon- oder Stickstoffstrom 'verwittern' die Kristalle unter Abgabe von Benzol. Im Ölpumpenvakuurn läßt sich das koordinierte Benzol vollständig von 'Bu₃SiK(Benzol)₃ abtrennen.

(g) Zu 0.35 g (1.32 mmol) 18-Krone-6 werden 1.32 mmol 'Bu₃SiNa in 4.75 ml THF gegeben, wobei die gelbe Lösung intensiv orangefarben wird. Nach Abkondensieren von THF im Ölpumpenvakuum und Aufnahme des orangefarbenen Rückstands in 5 ml Pentan/5 ml Toluol fällt aus der Lösung bei -23° C nur 18-Krone-6 in Form kleiner orangegelber Kristalle. Laut NMR-Spektren enthält die durch Aufnahme des Rückstands in C₆D₆ hergestellte Lösung extrem hydrolyse- und oxidationsempfindliches *Tri-tert-butylsilylnatrium-18-Krone-6* (1/1) 'Bu₃SiNa(18-C-6). — ¹H-NMR (C₆D₆; iTMS): $\delta = 1.63$ (s; Si'Bu₃), 3.24 (s; 12 CH₂). — ¹³C(¹H)-NMR (C₆D₆, iTMS): $\delta = 24.83$ (3 CMe₃), 34.98 (3 CMe₃), 69.96 (12 CH₂). — ²⁹Si-NMR ([D₈]-Toluol, -70°C, eTMS): $\delta = 43.1$ (breit; erst bei tiefer Temperatur sichtbar; Si'Bu₃).

(h) Zu 0.63 mmol 'Bu₃SiNa (gewonnen durch Abkondensieren flüchtiger Anteile von 'Bu₃SiNa in Bu_2O im Hochvakuum) werden 0.236 g (0.630 mmol) Kryptofix-222 in 1 ml $C_6 D_6$ gegeben, wobei sich eine rote Lösung über tiefrotem Öl bildet. Laut NMR-Spektren enthält die C₆D₆-Lösung Tri-tert-butylsilylnatrium-Kryptofix-222 (1/1) 'Bu₃SiNa(C222). — ¹H-NMR ($C_6 D_6$; iTMS): $\delta = 1.62$ (s; Si'Bu₃), 2.17 (breit; 2 OCH₂CH₂O), 3.14/3.21 (breit/breit; 6 OCH₂CH₂N). - ¹³C(¹H)-NMR (C₆D₆, iTMS): $\sigma =$ 25.23 (3 CMe₃), 35.61 (3 CMe₃), 52.99/67.67 (6 OCH_2CH_2N), 68.52 (3 OCH_2CH_2N). — ²⁹Si-NMR $(C_6 D_6; eTMS): \delta = 35.2$ (breit; Si'Bu₃). — Anmerkungen: (i) 'Bu₃SiNa(C222) ist extrem hydrolyse- und oxidationsempfindlich. Die hohe Verbindungsreaktivität zeigt sich etwa darin, daß die C₆D₆-Lösungen der Synthesen immer über 20% 'Bu₃SiH enthalten bzw. daß Lösungen des Addukts in Mischungen von $C_6 D_6$ /wenig THF oder $C_6 D_5 CD_3 / THF$ nach 1 h bei Raumtemperatur nur noch Supersilan enthalten ('Bu₃SiH in ersterem, 'Bu₃SiD in letzterem Falle; in ersterem Falle

wird sowohl THF als auch C222 deprotoniert) bzw. daß Lösungen des Addukts in $[D_8]$ -THF bei Raumtemperatur innerhalb von Minuten nur noch 'Bu₃SiD enthalten. — (ii) Auch 'Bu₃SiK (0.032 g, 0.13 mmol) setzt sich mit Kryptofix-222 (0.13 mmol) in C₆D₆ (1 ml) zu einem roten Öl um (wohl *Tri-tert-butylsilylkalium– Kryptofix-222* (1/1) 'Bu₃SiK(C222)), das sich aber in weniger als 1 Minute unter Bildung von 'Bu₃SiH entfärbt. Mithin wird nicht C₆D₆, sondern Kryptofix deprotoniert. Aus 'Bu₃SiK und Kryptofix-222 in Heptan bildet sich ein unlöslicher rotbrauner Niederschlag.

5.5. Thermolyse von in Solvenzien gelösten Supersilylalkalimetallen 'Bu₃SiM in Ab- oder Anwesenheit von Supersilylhalogeniden 'Bu₃SiX

Nachfolgend werden sowohl die im Titel angesprochenen Thermolysen als auch Umsetzungen von Supersilylhalogeniden mit Alkalimetallen behandelt, welche — sofern die Silyl alkalimetalle 'Bu₃SiM während ihrer Bildung mit dem Solvens oder mit unumgesetztem Halogenid 'Bu₃SiX reagieren, ebenfalls Titelthermolysen darstellen.

(a) Alkane als Solvenzien: (i) Die Thermolyse äquimolarer Mengen 'Bu₃SiNa und 'Bu₃SiI in Heptan bei 100°C führt zum Disilan 'Bu₃Si-Si'Bu₃ und zu dessen Thermolyse produkten in Heptan (hauptsächlich $'Bu_3SiH$ sowie ('Bu_3SiCH_2)₂C = CH₂; Identifizierung durch Vergleich mit authentischen Proben). Die Umsetzung ist nach 12 h noch nicht abgeschlossen. — (ii) Die mehrtägige Thermolyse von 'Bu₃SiK in C₆D₁₂ bei 100°C führt zu 'Bu₃SiH. Somit wird unter den Reaktionsbedingungen nicht das Reaktionsmedium, sondern Supersilylkalium deprotoniert. — (iii) Ein Gemisch aus 3.52 g (10.8 mmol) 'Bu₃SiI und 3.00 g (76.7 mmol) Kaliumschnitzeln in 50 ml Heptan wird 5 h zum Sieden (ca. 100°C) erhitzt (die Bildung von 'Bu₃SiK benötigt unter diesen Bedingungen viel weniger als 1 h). Der sich hierbei bildende graue Niederschlag besteht aus K, KI und 'Bu₃SiK (Methanolyse zu 'Bu₃SiH, Reaktion mit Me₁SiCl zu 'Bu₃Si-SiMe₁), die Lösung enthält praktisch kein 'Bu₃SiK, dafür aber 'Bu₃SiH und 'Bu₃Si-Si'Bu₃ im Molverhältnis 4:1 (Identifizierung der Produkte durch Vergleich mit authentischen Proben; s. oben). - Anmerkung: Die Bildung von 'Bu₃Si-Si'Bu₃ unterbleibt bei der 12stündigen Thermolyse von 'Bu₃SiK (0.046 g, 0.19 mmol) in Anwesenheit von Supersilylhalogeniden 'Bu₃SiX (z.B. 0.073 g, 0.23) mmol 'Bu₃SiI) in Heptan bei 80°C.

(b) Tetrahydrofuran als Solvens: (i) Evakuierte und abgeschlossene, mit jeweils 0.1 mmol 'Bu₃SiNa in 0.5 ml THF (0.2 M) gefüllte NMR-Rohre werden erhitzt und der zeitliche Verlauf der 'Bu₃SiNa-Abnahme und der 'Bu₃SiH-Zunahme im Temperaturbereich 100 bis 140°C ¹H-NMR-spektroskopisch anhand der relativen Flächen der 'Bu₃Si-Protonen signale bei $\delta = 1.009$ und 1.130 bestimmt. Die Thermolysen verlaufen

näherungsweise nach 1. Reaktionsordnung. Für die Reaktionstemperaturen 100/110/120/140°C ergibt sich 10⁶k zu 3.583/7.567/36.73/58.62 s⁻¹, $\tau_{1/2}$ zu 53.3/25.4/15.3/3.31 h und ΔG^{\ddagger} zu 131/132/134/ 136 kJ mol⁻¹. Es folgt für $\Delta H^{\ddagger} = 89.4$ kJ mol⁻¹, für $\Delta S^{\dagger} = 111.7 \text{ J K}^{-1} \text{ mol}^{-1} \text{ und für } \tau_{1/2}$ bei 85°C ca. 175 h. Versetzt man die Reaktionsgemische nach der Thermolyse mit einigen Tropfen Me₃SiCl so bildet sich - laut ¹H-NMR - $CH_2 = CH - OSiMe_3$ (Identifizierung durch Vergleich mit authentischer Probe [52]. - (ii) In evakuierten und abgeschlossenen NMR-Rohren werden 0.1 mmol 'Bu₃SiNa und 0.023 g (0.1 mmol) 'Bu₃SiCl bzw. 0.028 g (0.1 mmol) 'Bu₃SiBr in 0.4 ml THF 40 h auf 100°C erhitzt. Laut ¹H-NMR bleibt die Konzentration der Supersilylhalogenide konstant, und es bildet sich kein 'Bu₃Si-Si'Bu₃, während die Konzentration an 'Bu₃SiH ansteigt (Identifizierung der Produkte durch Vergleich mit authentischen Proben; nach Zugabe von Me₃SiCl zum Thermolysat bildet sich $CH_2 = CH - OSiMe_3$; s. oben).

(c) Benzol als Solvens. (i) In einem evakuierten und abgeschlossenen NMR-Rohr erhitzt man 0.020 g (0.09 mmol) 'Bu₃SiNa in 0.6 ml C_6D_6 auf 85°C und bes-timmt den zeitlichen Verlauf der 'Bu₃SiNa-Abnahme und der 'Bu₃SiD- sowie 'Bu₃SiC₆D₅-Zunahme 'H-NMR-spektroskopisch anhand der relativen Flächen der 'Bu₃Si-Protonensignale bei $\delta = 1.409$ und 1.117 sowie 1.227. Für die näherungsweise nach 1. Reaktionsordnung erfolgende Thermolyse ergibt sich k zu 39.6 s⁻¹. $\overline{\tau}_{1/2}$ zu ca. 60 h. — (ii) In einem evakuierten und abgeschlossenen NMR-Rohr erhitzt man 0.123 g (3.14 mmol) Kaliumschnitzel und 0.087 g (0.31 mmol) 'Bu₃SiBr in 0.6 ml C₆D₆ auf 58°C. Laut ¹H-NMR hat sich nach 2 h ca. 10% 'Bu₃SiBr zu 'Bu₃SiK umgesetzt. Nach 8 h beträgt der Umsatz ca. 55%, wobei ca. 8% 'Bu₃SiK, 12% 'Bu₃SiD (Identifizierung durch Vergleich mit authentischer Probe; s. oben) und 35% Bu₃SiC₆D₅ entstanden sind. Letztere Verbindung wurde unabhängig aus 5 mmol 'Bu₃SiNa, 5 mmol C₆H₅Cl in 30 ml THF bei - 78°C erzeugt. 3.58 mmol (73%) farbloses 'Bu₁SiPh (Schmp. 40-42°C) bei 80°C/ÖV ['H-NMR (CCl₄): $\delta = 1.23$ (s; Si'Bu₃), 7.26/7.81 (m/m; Ph). — MS: m/z = 276 (M⁺). — Gef. C, 77.62; H, 11.91. $C_{18}H_{32}Si$ (276.5) ber.: C, 78.18; H, 11.66].

5.6. Umsetzung von Supersilylalkalimetallen Bu₃SiM zu Supersilan Bu₃SiH, Trimethylsilylsupersilan 'Bu₃SiSiMe₃ und Superdisilan 'Bu₃SiSitBu₃ (gemeinsam mit Ch.M.M. Finger und P. Karampatses)

Bezüglich der Bildung von 'Bu₃SiH durch Thermolyse von 'Bu₃SiM in Kohlenwasserstoffen bzw. Ethern vgl. Abschnitte 5.4 und 5.5 bezüglich vorläufiger Mitteilungen der Bildung von 'Bu₃SiSiMe₃ und 'Bu₃SiSi'Bu₃ Lit. [14-16,35,36].

(a) Alle gewonnenen donorfreien und donorhaltigen

Supersilylalkalimetalle [']Bu₃SiM (M = Li, Na, K, Rb, Cs) protolysieren in An- oder Abwesenheit organischer Lösungsmittel bei Zusatz von Wasser, Alkoholen, Carbonsäuren usw. selbst bei tiefen Temperaturen vollständig unter Bildung von *Tri-tert-butylsilan* (Supersilan) [']Bu₃SiH. Man erhält reines Supersilan nach Abdestillation des Reaktionsmediums durch Kondensation des Destillationsrückstands im ziehenden Ölpumpenvakuum in eine auf -78° C gekühlte Vorlage. Identifizierung von 'Bu₃SiH durch Vergleich mit authentischer Probe (vgl. Abschnitt 5.1).

(b) Alle gewonnenen donorfreien und donorhaltigen, in organischen Medien gelösten Supersilylalkalimetalle Bu_3SiM (M = Li, Na, K, Rb, Cs) reagieren bei Raumtemperatur und darunter mit äquimolaren Mengen an Halogensilanen Me₃SiX (X = F, Cl, Br, I) quantitativ unter Bildung von Trimethylsilyltri-tert-butylsilan (Trimethylsilylsupersilan) 'Bu₃SiSiMe₃. Man erhält das reine Disilan nach Abkondensieren aller im Ölpumpenvakuum flüchtigen Anteile, Lösen des Rückstands in Pentan, Abfiltrieren unlöslicher Anteile (MX), Abziehen des Pentans und Sublimation des Filtratrückstands bei 90°C/ÖV als farblosen Festoff. — 'H-NMR ($C_6 D_6$, iTMS): $\delta = 0.293$ (s; SiMe₃), 1.162 (s; Si'Bu₃); (THF, iTMS): $\delta = 0.280$ (s; SiMe₃), 1.185 (s; Si'Bu₃); (CCl₄, iTMS): $\delta = 0.251$ (s; SiMe₃), 1.167 (s; Si'Bu₃). — ¹³C(¹H)-NMR (C₆D₆, iTMS): $\delta = 3.29$ (SiMe₃), 23.70 $(3 CMe_3), 31.53 (3 CMe_3). - {}^{29}Si-NMR (C_0D_0),$ eTMS): $\delta = -19.23$ (SiMe₃), 2.31 (Si'Bu₃). — Gef.: C, 65.94; H, 13.36. C₁₅H₃₆Si₂ (272.6) ber.: C, 66.08; H, 13.31. - Anmerkung: 'Bu₃SiNa setzt sich mit Me₃SiN₃ in THF ebenfalls zu 'Bu₃SiSiMe₃ um, während die Reaktion in Pentan als Medium über $Me_1Si - N = N - NNa(Si'Bu_1)$ zu $Me_1Si - NNa(Si'Bu_1)$ führt (Methanolyse zu Me₁Si-NH(Si'Bu₁) und darüber hinaus zu ' Bu_3Si-NH_2) [40].

(c) (i) Bezüglich der Umsetzung von Nitrosyltetrafluorborat NOBF₄ mit 'Bu₃SiK in Heptan vgl. [35,36]. — (ii) Zu einer Suspension von 0.346 g (2.04 mmol) wasserfreiem Silbernitrat AgNO₃ (getrocknet durch eintägiges Erwärmen auf 50°C im ziehenden Hochvakuum) in 20 ml THF werden innerhalb von 10 Minuten 2.08 mmol 'Bu₃SiNa in 6.4 ml THF getropft, wobei schwarzes Ag ausfällt. Laut $^{+}H-NMR$ (C, D,) Bildung von 'Bu₃Si-Si'Bu₃ und 'Bu₃SiH im Molverhältnis 4:1. Man erhält reines Superdisilan nach Abkondensieren aller im Ölpumpenvakuum flüchtigen Anteile, Zugabe von 15 ml Pentan zum Rückstand, Extraktion der gebildeten Suspension mit 25 ml konz. HNO₃, Abtrennen der HNO₃-Phase, Waschen der Pentanphase zunächst mit 25 ml wässerigem NH₃ (6 molar), dann mit 3×50 ml H₂O, Abkondensieren des Pentans im ÖV: 0.204 g (0.51 mmol, 79%) 'Bu₃Si–Si'Bu₃. — (iii) In eine auf -78°C gekühlte Lösung von 5.0 mmol 'Bu₃SiNa in 15 ml THF werden 0.32 g (2.5 mmol) Tetracyanethylen TCNE in 10 ml THF getropft. Nach Abkondensieren aller im Ölpumpenvakuum flüchtigen Anteile und Aufnahme des Rückstands in 30 ml Pentan kristallisieren aus dem Medium bei - 30°C innerhalb von 4 Tagen 1.23 g (3.1 mmol, 62%) farbloses, bei 198°C schmelzendes Hexa-tert-butyldisilan (Superdisilan) 'Bu₃Si-Si'Bu₃ [35,36]. - 'H-NMR (C₆D₆, iTMS): $\delta = 1.379$ (s, 2Si'Bu₃), (THF, iTMS): $\delta = 1.363$ $(s, 2Si'Bu_3); (CCl_4, iTMS) : \delta = 1.333 (s; 2 Si'Bu_3). --$ ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 27.28$ (6 CMe₃), 34.63 (6 CMe₃). — ²⁹Si-NMR (C₆D₆, eTMS): $\delta =$ 35.35 (2Si^tBu₃). — Raman: $\nu_{SiSi} = 271 \text{ cm}^{-1}$. — Gef.: C, 72.08, H, 13.91. C₂₄H₅₄Si₂ (398.8) ber.: C, 72.46; H, 13.65. — Röntgenstrukturanalyse: [35,36]. — (iv) Durch eine auf - 78°C gekühlte Lösung von 0.5 mmol ⁴Bu₃SiNa(THF)₂ in 0.5 ml [D₈]-Toluol wird 30 Minuten lang ein über P₂O₅ getrockneter Strom von Sauerstoff geleitet. Nach Erwärmen auf Raumtemperatur, Abkondensieren aller im Ölpumpenvakuum flüchtigen Anteile, Aufnahme des Rückstands in 1 ml MeOH, Abkondensieren von MeOH, weist das ¹H-NMR (C₆D₆, iTMS) des in C₆D₆ gelösten Methanolrückstands auf die Anwesenheit von 'Bu₃SiOH, 'Bu₃SiH und 'Bu₃Si-Si'Bu₃

im Molverhältnis 8:1:1 (Identifizierung der Proben durch Vergleich mit authentischem 'Bu₃SiOH [21-27], 'Bu₃SiH (s. oben), 'Bu₃Si-Si'Bu₃ (s. oben). Des weiteren bilden sich untergeordnet 3 Verbindungen ($\delta =$ 1.134, 1.223 und 1.308), die bisher nicht identifiziert wurden (Supersilylperoxide?). Anmerkung: 'Bu₃SiK ist sauerstoffempfindlicher als 'Bu₃SiNa und setzt sich mit feuchter Luft zu 'Bu₃Si-Si'Bu₃, 'Bu₃Si-O-Si'Bu₃, 'Bu₃SiH, 'Bu₃SiOH und einer unbekannten Substanz ('Bu₃SiOOH?) um.

5.7. Röntgenstrukturanalysen von 'Bu₃SiM (M = Li, Na) 'Bu₃SiNa(THF)₂, 'Bu₃SiNa(PMDTA) und 'Bu₃SiK(Benzol)₃

Für Röntgenstrukturanalysen geeignete Kristalle der Titelverbindungen wurden wie folgt erhalten: 'Bu₃SiLi in Form gelber Prismen aus *n*-Heptan bei -23° C; 'Bu₃SiNa in Form orangegelber Oktaeder aus *n*-Heptan bei -23° C; 'Bu₃SiNa(THF)₂ in Form blaßgelber Prismen aus *n*-Heptan bei -25° C; 'Bu₃SiNa(PMDTA) in Form blaßgelber Rhomben aus Pentan/Diethylether (2:1) bei -23° C; 'Bu₃SiK(Benzol)₃ in Form oran-

Tabelle 3

Ausgewählte Parameter zu den Röntgenstrukturanalysen der in Zeile 1 wiedergegebenen Verbindungen

	'Bu ₃ SiLi	'Bu ₃ SiNa	'Bu ₃ SiNa(THF) ₂	'Bu ₃ SiNa(PMDTA)	$^{\prime}Bu_{3}SiK(C_{6}D_{6})_{3}$
Summenformel Molmasse [g mol ⁻¹] Tappa [K]	C ₁₂ H ₂₇ LiSi 206.37 193	C ₁₂ H ₂₇ NaSi 222.42 203	C ₂₀ CH ₄₃ NaO ₂ Si 366.62 148	C ₂₁ H ₅₀ N ₃ NaSi 395.72 198	C ₃₀ H ₂₇ D ₁₈ KSi 493.00 158
Wellenlünge [Å] Kristallgröße [mm [*]] Kristallsystem Raumgruppe	MoK α , $\lambda = 0.71073$ 0.4 × 0.4 × 0.5 monoklin P2(1)/n	MoK α . $\lambda = 0.71073$ 0.3 × 0.3 × 0.4 kubisch Pa-3	MoK α , $\lambda = 0.71073$ 0.2 × 0.2 × 0.3 triklin P-1	MoK α , $\lambda = 0.71073$ 0.45 × 0.5 × 0.55 monoklin P2(1)/c 0.502(2)	MopK α , $\lambda = 0.71073$ 0.15 \times 0.2 \times 0.4 orthorhombisch Pna2(1) 17.242(7)
a [A]	8.7243(4)	14.3254(1)	9.041(3)	9.392(3)	11 280(2)
b [Å] c [Å] α [°] β [°] γ [°] V [Å ³] Z Dichte [Mg/m ³] μ [mm ⁻¹] F(000) Index-Bereiche	$13.8288(5)$ $12.1194(5)$ 90 $92.274(1)$ 90 $1461.0(1)$ 4 0.938 0.128 464 $-11 \le h \le 11,$ $-18 \le k \le 14,$ $-15 \le l \le 15$	$14.3254(1)$ $14.3254(1)$ 90 90 $2939.82(4)$ 8 1.005 0.158 992 $-16 \le h \le 15.$ $-14 \le k \le 16.$ $-16 \le l \le 16$	$11.947(4)$ $12.462(4)$ $71.39(1)$ $71.58(1)$ $69.38(1)$ $1162.1(7)$ 2 1.048 0.129 408 $-11 \le h \le 11,$ $-15 \le k \le 15,$ $-15 \le l \le 15$	27.202(7) 11.391(3) 90 11.14(3) 90 2712(1) 4 0.969 0.112 888 $0 \le h \le 11$, $0 \le k \le 32$, $-13 \le l \le 12$	11.389(3) 15.170(6) 90 90 90 2979(2) 4 1.054 0.233 1032 $-21 \le h \le 22,$ $-14 \le k \le 10,$ $-19 \le l \le 19$ 64 16
2 θ -Bereich [°] gesammelte Reflexe unabhängige Reflexe Reflexe mit $F > 4\sigma(F)$ Gewichtung " x/y GOOF R1 [$F > 4\sigma(F)$] wR2 Restelektronendichte [$e / Å^3$]	57.18 7965 2824 1626 0.1904/0.6512 1.185 0.0914 0.2557 0.830	49.34 12445 840 677 0.0557/2.0894 1.086 0.0540 0.1226 0.263	58.42 6750 3647 2929 0.0459/0.7613 1.077 0.0432 0.1055 0.506	50.02 5014 4721 3137 0.0845/0.8620 1.022 0.0577 0.1437 0.357	58.16 16146 5917 3611 0.0182/1.8123 1.094 0.0376 0.0783 0,200

* $w^{-1} = \sigma^2 F_0^2 + (xP)^2 + yP; P = (F_0^2 + 2F_c^2)/3.$

geroter Prismen aus C_6D_6 bei 25°C. Die Kristalle wurden jeweils in Perfluorpolyetheröl montiert.

Für die Strukturbestimmung von 'Bu₃SiNa(PMDTA) wurde ein Siemens P4-Diffraktometer genutzt, für die Bestimmungen der anderen Verbindungen zusätzlich ein CCD-Flächendetektor. Die Strukturlösungen (SHELXTL, Version 5) erfolgten mit direkten Methoden. Alle Nichtwasserstoffatome wurden in anisotroper Beschreibung verfeinert, H-Atome unter Einschluß berechneter Atomlagen, die mit einem Reitermodell und fixierten isotropen U_i-Werten in die Verfeinerung einbezogen wurden. Bezüglich der ORTEP-Plots der röntgenstrukturanalytisch geklärten Verbindungen vgl. Abbn. 1–5.

Angaben zu den Röntgenstrukturanalysen sind in Tabelle 3 zusammengestellt. Diese und weitere Informationen wurden beim Cambridge Crystallographic Data Center hinterlegt. Kopien der Daten können kostenlos bei folgender Adresse angefordert werden: The Director, CCDC, 12 Union Road, GB-Cambridge CB2 1EZ (Telefax: Int. + 1223/336033, E-mail: teched@chemcrys.cam.ac.ux).

Dank

Wir danken der Deutschen Forschungsgemeinschaft für die Unterstützung der Untersuchungen mit Sachund Personalmitteln.

Literaturverzeichnis

- 114 Mitteilung über Verbindungen des Siliciums. Zugleich 13. Mitteilung über sterisch überladene Supersilylverbindungen, 113.
 (12.) Mitteilung: [37,38].
- [2] N. Wiberg, E. Kühnel, K. Schurz, H. Borrmann, A. Simon, Z. Naturforsch. 43b (1988) 1075.
- [3] N. Wiberg, K. Schurz, Chem. Ber. 121 (1988) 581.
- [4] N. Wiberg, K. Amelunxen, H. Nöth, M. Schmidt, H. Schwenk, Angew. Chem. 108 (1996) 110.
- [5] N. Wiberg, K. Amelunxen, H. Nöth, M. Schmidt, H. Schwenk, Angew. Chem. Int. Ed. Engl. 35 (1996) 65.
- [6] P.J. Davidson, M.F. Lappert, R. Pearce, Chem. Rev. 76 (1976) 219.
- [7] T. Tsumuraya, S.A. Batcheller, S. Masamune, Angew. Chem. 103 (1991) 916.
- [8] T. Tsumuraya, S.A. Batcheller, S. Masamune, Angew. Chem. Int. Ed. Engl. 30 (1991) 902.
- [9] W. Uhl, Angew. Chem. 105 (1993) 1449.
- [10] W. Uhl, Angew. Chem. Int. Ed. Engl. 32 (1993) 1386.
- [11] A. Sekiguchi, H. Sakurai, Adv. Organomet. Chem. 37 (1994) 1.
- [12] M. Driess, H. Grützmacher, Angew. Chem. 108 (1996) 900.
- [13] M. Driess, H. Grützmacher, Angew. Chem. Int. Ed. Engl. 35 (1996) 827.
- [14] N. Wiberg, in: B. Marciniec, J. Chojnowski (Hrsg.), Progress in Organosilicon Chemistry, Gordon and Breach Publishers, Amsterdam, 1995, S. 19.

- [15] N. Wiberg, in: A.R. Bassindale, P.P. Gaspar (Hrsg.), Frontiers of Organosilicon Chemistry, The Royal Society of Chemistry, Cambridge, 1991, S. 263.
- [16] N. Wiberg, Coord. Chem. Rev., im Druck.
- [17] M. Weidenbruch, W. Peter, Angew. Chem. 87 (1975) 670.
- [18] M. Weidenbruch, W. Peter, Angew. Chem. Int. Ed. Engl. 14 (1975) 642.
- [19] M.P. Doyle, C.T. West, J. Am. Chem. Soc. 97 (1975) 3777.
- [20] E.M. Dexheimer, L. Spialter, Tetrahedron Lett. (1975) 1771.
- [21] M. Weidenbruch, H. Pesel, W. Peter, R. Streichen, J. Organomet. Chem. 141 (1977) 9.
- [22] M. Weidenbruch, H. Pesel, Z. Naturforsch. 33b (1978) 1465.
- [23] P.M. Nowakowski, L.H. Sommer, J. Organomet. Chem. 178 (1979) 95.
- [24] M. Weidenbruch, C. Pierrard, H. Pesel, Z. Naturforsch. 33b (1978) 1468.
- [25] M. Weidenbruch, H. Pesel, D. van Hien, Z. Naturforsch. 35b (1980) 31.
- [26] M. Weidenbruch, H. Flott, J. Fleischhauer, W. Schleker, Chem. Ber. 115 (1982) 3444.
- [27] M. Weidenbruch, H. Flott, B. Ralle, Z. Naturforsch. 38b (1983) 1062.
- [28] N. Wiberg, G. Fischer, P. Karampatses, Angew. Chem. 96 (1984) 58.
- [29] N. Wiberg, G. Fischer, P. Karampatses, Angew. Chem. Int. Ed. Engl. 23 (1984) 59.
- [30] K. Tamao, A. Kawachi, Adv. Organomet Chem., 38 (1995) 1 und dort zit. Lit.
- [31] K.W. Klinkhammer, W. Schwarz, Z. Anorg. Allg. Chem., 619 (1993) 1777 und dort zit. Lit.
- [32] K.W. Klinkhammer in: N. Auner, J. Weis (Hrsg.), Organosilicon Chemistry II, VCH, Weinheim, 1996, S. 493.
- [33] K.W. Klinkhammer, Chem. Eur. J., im Druck and dort zit. Lit.
- [34] C. Eaborn, K. Izod, J.D. Smith, J. Organomet. Chem., 500 (1995) 89 und dort zit. Lit.
- [35] N. Wiberg, H. Schuster, A. Simon, K. Peters, Angew. Chem. 98 (1986) 100.
- [36] N. Wiberg, H. Schuster, A. Simon, K. Peters, Angew. Chem. Int. Ed. Engl. 25 (1986) 79.
- [37] N. Wiberg, K. Amelunxen, H. Nöth, H. Schwenk, W. Kaim, A. Klein, T. Scheiring, Angew. Chem. 109 (1997) 1258.
- [38] N. Wiberg, K. Amelunxen, H. Nöth, H. Schwenk, W. Kaim, A. Klein, T. Scheiring, Angew. Chem. Int. Ed. Engl. 36 (1997) 1213.
- [39] N. Wiberg, Ch.M.M. Finger, unveröffentlicht.
- [40] N. Wiberg, K. Schurz, J. Organomet. Chem. 341 (1988) 145.
- [41] H. Sakurai, A. Okada, M. Kira, K. Yonezawa, Tetrahedron Lett. (1971) 1511.
- [42] N. Wiberg, Adv. Organomet. Chem. 24 (1985) 179.
- [43] Holleman-Wiberg, Lehrbuch der Anorganischen Chemie, 101. Auflage, Walter deGruyter, Berlin, 1995.
- [44] A. Heine, R. Herbst-Irmer, G.M. Sheldrick, D. Stalke, Inorg. Chem. 32 (1993) 2694.
- [45] S.S. Al-Juaid, C. Eaborn, P.B. Hitchcock, R. Izod, M. Mallien, J.D. Smith, Angew. Chem. 106 (1994) 1336.
- [46] S.S. Al-Juaid, C. Eaborn, P.B. Hitchcock, R. Izod, M. Mallien, J.D. Smith, Angew. Chem. Int. Ed. Engl. 33 (1994) 1268.
- [47] C. Schade, P.v.R. Schleyer, Adv. Organomet. Chem. 27 (1987) 169.
- [48] R. Janoschek, Chem. Zeit, 21 (1988) 128.
- [49] J. Bruckmann, C. Krüger, Acta Cryst. C51 (1995) 1152.
- [50] A.E. Newkirk, J. Am. Cham. Soc. 68 (1963) 2736.
- [51] N. Wiberg, K. Amelunxen, H.-W. Lerner, K. Polborn, H. Nöth, A. Appel, J. Knizek, Z. Anorg. Allg. Chem., im Druck.
- [52] R.B. Bates, L.M. Kroposki, D.E. Potter, J. Org. Chem. 37 (1972) 560.